
Library of Modulator of Protein-protein Interactions (PPI)

March, 2012 ChemDiv, Inc.

Prepared by Sergey E. Tkachenko, PhD Senior Director of Medicinal chemistry

Design of PPI Library Principles:

*Diversity *3D-Shape *Escape from flatland *Drug-likeness *Natural product likeness *Targeted Diversity

Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome

Protein-protein interactions (PPIs) play a key role in nearly every biological function and are a promising new class of biological targets for therapeutic intervention

Main problem - PPIs include the most poorly druggable targets

Diversity of PPI Library

*Nature "sees" molecules as 3D surfaces of chemical information. Therefore the biological activity of any given molecule is intrinsically dependent upon its 3D shape

The molecular shape diversity of a small molecule library is the most fundamental indicator of overall functional diversity

Although the term "diversity" is somewhat subjective, there are six principle components of structural diversity that have been consistently identified in the literature

Scaffold diversity - presence of a range of distinct molecular scaffolds;
 Functional group diversity - variation in the functional groups present;
 Appendage diversity (substituent or building-block diversity) - variation in structural moieties around a common scaffold;
 Stereochemical diversity - variation in the orientation of potential macromolecule-interacting elements;
 Conformational diversity - variation of possible conformers of molecules;
 Chain diversity - presence of different distinct chains (especially if scaffold is not determined uniquely)

"Escape from Flatland" – New Approach for Scaffold & Library Design

Inspired by: Frank Lovering, et.al. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756

Fsp3 = number of sp3-hybridized carbons/ total carbon count

*The increase of scaffold/molecule saturation leads to:
*More diverse set of compounds
*More highly complex molecules
*Natural product-likeness
*Access to greater chemical space
*Better complement to the spatial subtleties of target proteins
*3D-dimensionality may result in greater selectivity
*Higher water solubility
*Better phys-chemical parameters (logP and PSA)
*Very low increase of MW
*New stereo-centers

*****As result: Faster transition of compound from discovery to drugs

One difficulty: more complex scaffold/molecules require new perfect synthetic approaches. Diversity oriented synthesis!!!

Fsp3 of Small Molecules in Clinical Trials

Phase	#compounds	Fsp3%
Launched	1719	45.4
Phase 2&3	2315	42.7
Discontinued& Withdrawn	2146	42.4
Phase 1	1223	41.1
Preclinical	21204	37.7

(compounds with MW>650 were excluded)

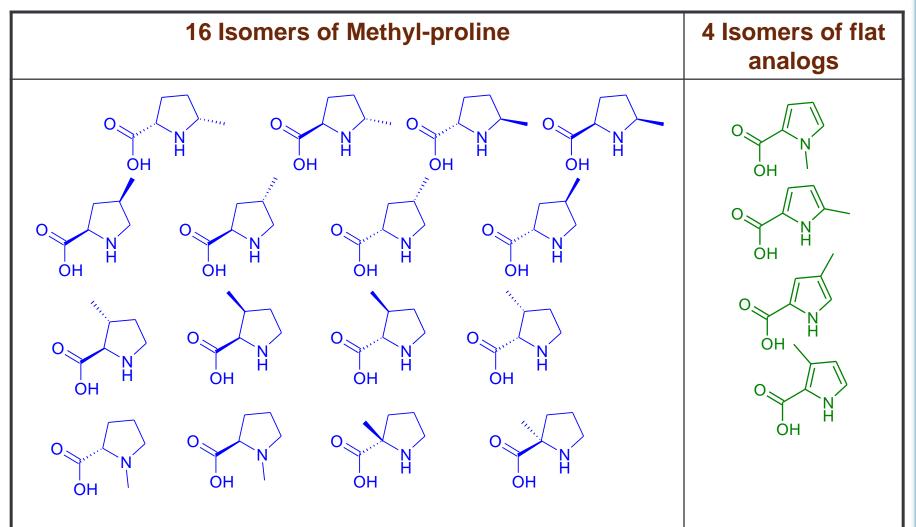
Fsp3 is important drug-like parameter

Comparison of Drug-like vs Natural Libraries 1

Content of sp3 carbons (frequency of occurrence)

Type of sp3 carbons	Content in Kinase Targeted library	Content in Natural Product library
c — C	23.2%	68.1%
C → C → C	59.8%	92.3%
c → H	87.5%	95.6%
н−√н	69.3%	87.8%

Drug-like library – Kinase database (Integrity) ~25K compounds Natural Product library – combined sources ~ 25K compounds (compounds with MW>650 were excluded)

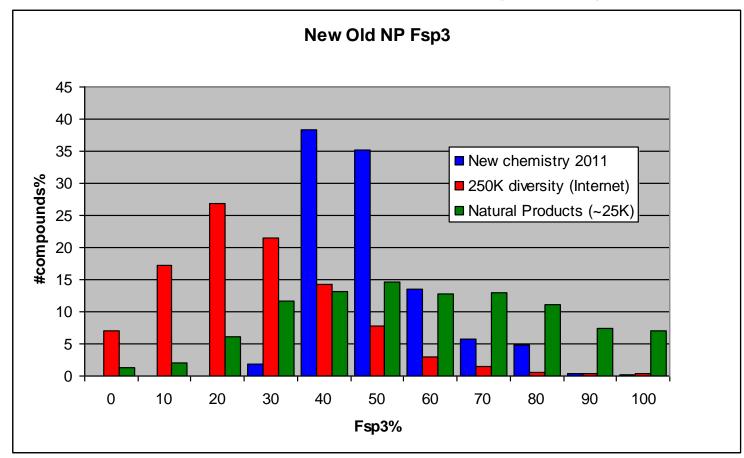

Comparison of Drug-like vs Natural Libraries 2

Content of flat fragments (frequency of occurrence)

Type of flat fragment	Content in Kinase Targeted library	Content in Natural Product library
	91.9%	59.7%
	34.8%	7.80%
	2.03%	2.53%
	4.48%	2.51%
S	5.09%	1.04%

Drug-like library – Kinase database (Integrity) ~25K compounds Natural Product library – combined sources ~ 25K compounds (compounds with MW>650 were excluded)

Increased 3D-Diversity of Flexible vs Flat Structures Example: Proline-like compounds


Proline-like compounds 2

Structure Flat compounds	Phys-chemical properties	Structure Flexible	Phys-chemical properties
O OH OH	Fsp ³ =0.0000 logP=0.980 logSW=-3.44 PSA=53.09		Fsp ³ =0.8000 logP=-2.330 logSW=-0.890 PSA=49.33
O O O H C H ₃	Fsp ³ =0.167 logP=1.180 logSW=-2.25 PSA=42.23	O OH CH ₃	Fsp ³ =0.833 logP=-0.840 logSW=-0.826 PSA=40.54
O OH OH	Fsp ³ =0.083 logP=2.81 logSW=-4.17 PSA=42.23	O OH OH	Fsp ³ =0.417 logP=1.540 logSW=-1.445 PSA=40.54
	Fsp ³ =0.167 logP=0.680 logSW=-2.15 PSA=48.02		Fsp ³ =0.833 logP=-1.00 logSW=-0.784 PSA=46.33
	Fsp ³ =0.286 logP=1.13 logSW=-3.71 PSA=34.03		Fsp ³ =0.857 logP=0.100 logSW=-0.454 PSA=32.34

Flexibility improves phys-chemical properties (logSW, ClogP, PSA) of scaffolds or building blocks

Parameter	Scaffold	Molecule
No und	esirable functionalities (Me	dChem filters)
No uno	desirable chemotypes (Mec	Chem filters)
Amide bonds	No more 2 amide bonds (cyclic or linear)	No more 2 amide bonds (cyclic or linear)
Aromatic rings	No more 2 aromatic rings	No more 3 aromatic rings
MW	100 <mw<350< td=""><td>150<mw<500< td=""></mw<500<></td></mw<350<>	150 <mw<500< td=""></mw<500<>
Fsp3	>0.30	>0.30
Sp3-Ring C atom	>0	>1
ClogP	-1.0 <clogp< 3.5<="" td=""><td>0 <clogp<5.0< td=""></clogp<5.0<></td></clogp<>	0 <clogp<5.0< td=""></clogp<5.0<>
PSA	10 <psa<60< td=""><td>40<psa<90< td=""></psa<90<></td></psa<60<>	40 <psa<90< td=""></psa<90<>
HBA/HBD	<6/2	<8/3
Rotatable bonds	<6	<8

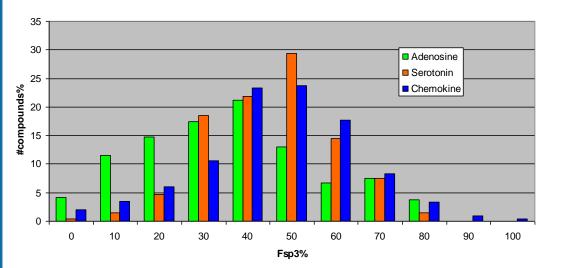
Comparison of Newest Chemdiv's Library (~20K), Available Diversity Set (Internet, 250K) and Natural Products (~25K)

Quo vadis?

Our chemistry is becoming more similar to natural products!

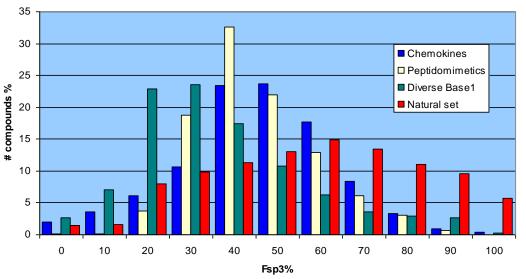
STRUCTURE of PPI BIASED LIBRARY

*Library consists of several complementary parts:


Nonpeptide Peptidomimetics (based on the PPI biased substructures) ~25K
Set of Recognition Elements (gamma-, beta-turns, dipeptide mimetics) ~30K
Tripeptide mimetics ~(3K - upon request)
Shape (helix, beta-sheet, strand, loop) mimetics ~10K
Solution Solut

PPI Focused sub-libraries:
PDZ-domain inhibitors ~ 5K
MDM2 binding inhibitors ~8K
CD16a binding inhibitors ~2K

*pGPCRs Focused sub-libraries:
 *Chemokines ~10K
 *Hedgehog pathway ~10K
 *Neurotensin ~2K
 *etc.


PPI biased library contains about 100K compounds (overlapping allowed)

Nonpeptide Peptidomimetics Fsp3 Difference of Different GPCR Ligands and Libraries

Fsp3 for GPCR ligands

Fsp3 in different databases

Virtual database from Integrity & MedChem sources:

Chemokine - 4.2K ligands

Serotonin - 8.6K ligands

*Adenosine - 2.4K ligands

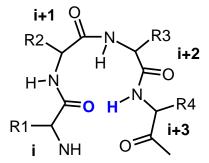
Natural set - 25K compounds

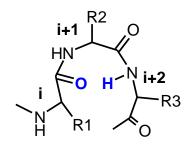
Available collection of compounds:

Peptidomimetic Library ~20K compounds

Diverse set - 250K compounds

Chemokines Set and Peptidomimetic Library have a similar distribution of the Fsp3 Chemokines are very different from diverse and natural sets

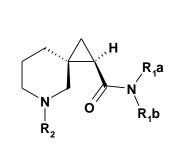

Set of Recognition Elements (gamma-, beta-turns, dipeptide mimetics)


*****Turns are defined as regions where a peptide chain reverses its overall direction

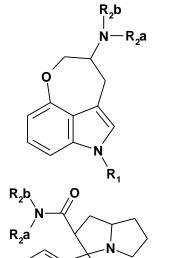
☆Gamma-turns involve three residues and a hydrogen bond is often formed between residues *i* and *i* + 2 so that a pseudo-7-membered ring is formed

Chain reversal in beta-turns involves four residues and a hydrogen bond may then be formed between residues *i* and *i* + 3 so that forms a pseudo-10-membered ring

A common method to mimic the bioactive conformation of peptides is to synthesize conformationally constrained analogues via backbone-backbone or backbone-side chain cyclization

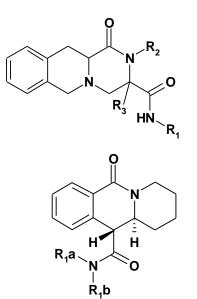


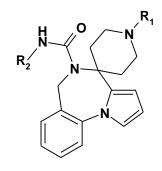
Beta-turn

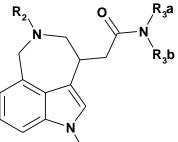

Gamma-turn

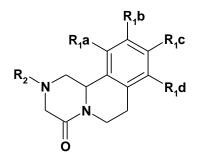
~ 350 new scaffolds proposed; Library contains 30K compounds

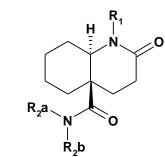
Examples of Scaffold (gamma-, beta-turns, dipeptide mimetics)

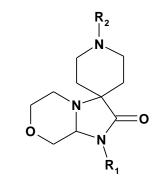


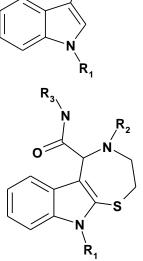





0


'nR₁





CGRP Antagonist ChemDiv Proposal

Morphing of Telcagepant Structure

stability?

Ν

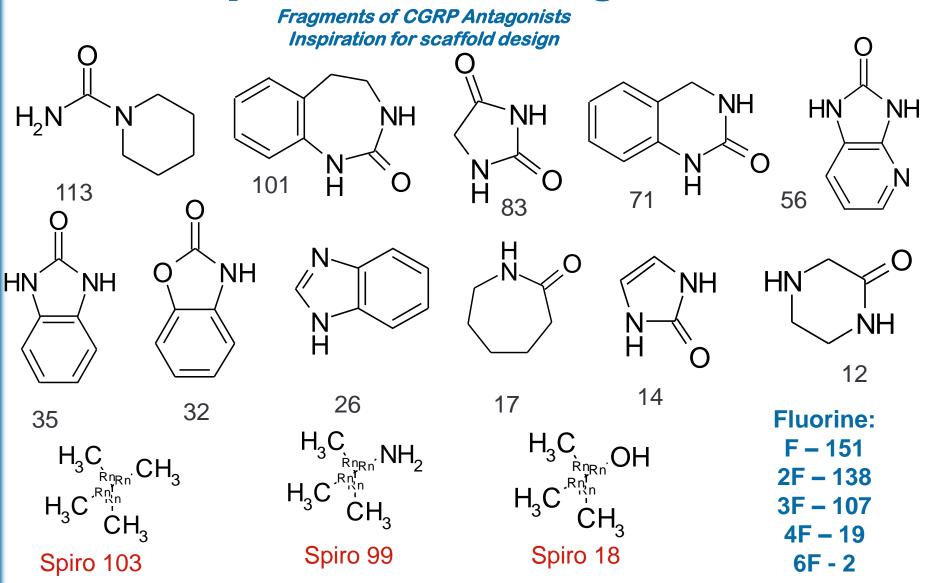
Ν

Variation of aza-heterocycle; Bioisosteric replacement; Variation of basisity, lipophilicity, solubility, number of HB-acceptors

Variation of core heterocycle; Variation of size and flexibility of heterocycle; Variation of Aryl substituents; Variation of N-substituent; Are several fluorines needed?

stability?

F


Metabolically unstable nitrogen! N-Oxide is the main metabolite

Variation of "linker"; urea bioisosters; Variation of flexibility, lipophilicity, number of HB-acceptors and HB-donors

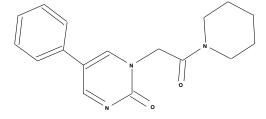
Telcagepant (Merck & Co.) phase III – discontinued

The main point is the susceptibility of Telcagepant to oxidative metabolism, which is believed to be involved in hepatic toxicity. Bioorg Med Chem Lett 2009; 19 (22): 636

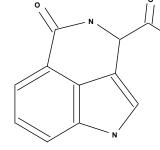
Set of compounds with Recognition Elements

The most privileged assembling sub-structures (results of analysis of 510 antagonists)

Inspiration for substitution design


Potency and bioavailability for caprolactam CGRP receptor antagonists

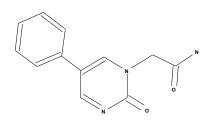
 R_2


R_1 N								
Compd	R ₁	R ₂	Ki (nM)	cAMP IC ₅₀ (nM)	cAMP +50% serum IC ₅₀ (nM)	Shift (fold)	Rat <i>F</i> (%)	Dog F (%)
6	Ph	Н	83	520	700	1.3	NT	NT
7	2-F-Ph	Н	22	65	120	1.8	NT	NT
8	3-F-Ph	Н	51	220	250	1.1	NT	NT
9	2,3-diF-Ph	Н	3.6	14	22	1.6	5	30
10	2,3-diF-Ph	2methoxyethyl	0.3	2	3	1.5	6	6
11	2,3-diF-Ph	2-hydroxyethyl	4.2	15	23	1.5	<1	NT
12	2,3-diF-Ph	cyclopropylmethyl	1.4	2	21	11	8	17
13	2,3-diF-Ph	methyl	2.7	8	22	2.8	12	60
14	2,3-diF-Ph	ethyl	2.4	6	30	5	30	61
15	2,3-diF-Ph	2-fluoroethyl	1.4	5	10	2	17	14
16	2,3-diF-Ph	2,2-difluoroethyl	0.9	5	15	3	25	11
17	2,3-diF-Ph	2,2,2,-trifluoroethyl	0.77	2.2	11	5	20	35

The American Chemical Society Prospective Conference Series "PK/PD for Medicinal Chemists" was held in Cambridge, MA on September 7-9, 2008. "CGRP Receptor Antagonists for the Treatment of Migraine" Ian M. Bell, Merck Research Laboratories, West Point, PA

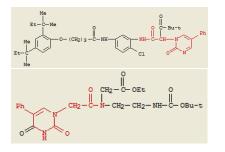
IP Assessment: SciFinder search

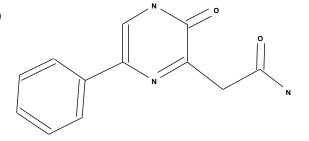
SciFinder: no hit found!



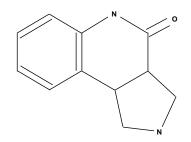
6 hits, not relative to CGRP

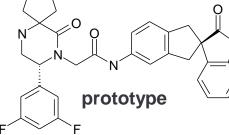
SciFinder: no hit found!


N

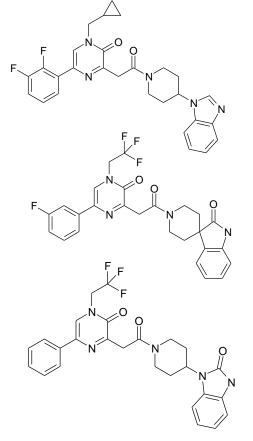

11 hits, all CGRP antagonists

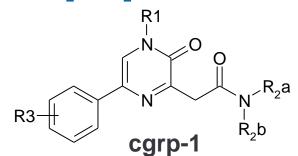
SciFinder: no hit found!!!


2 hits, not relative to CGRP


SciFinder: no hit found!!!

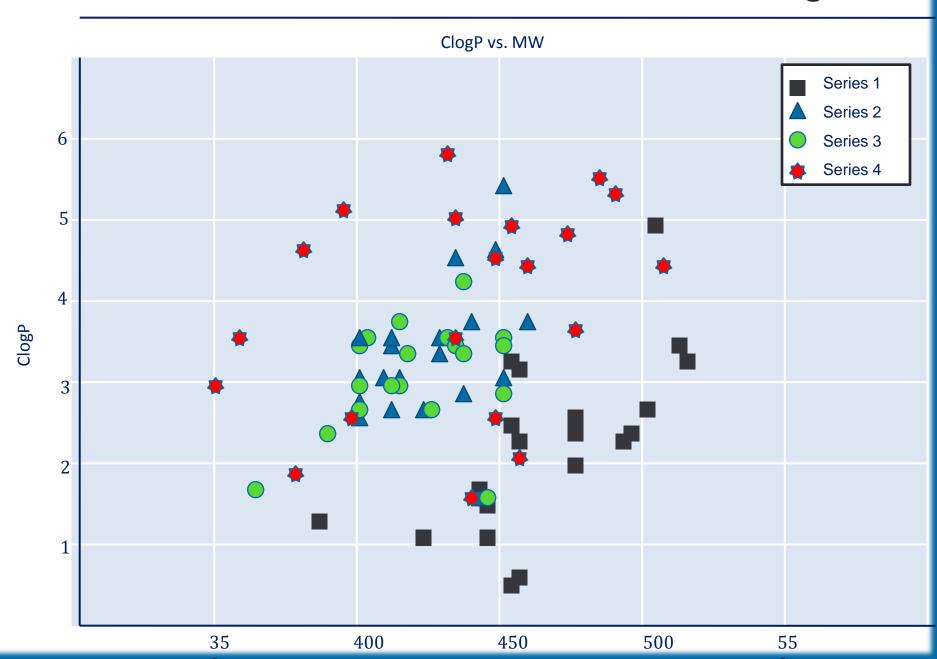
SciFinder: no hit found!!!

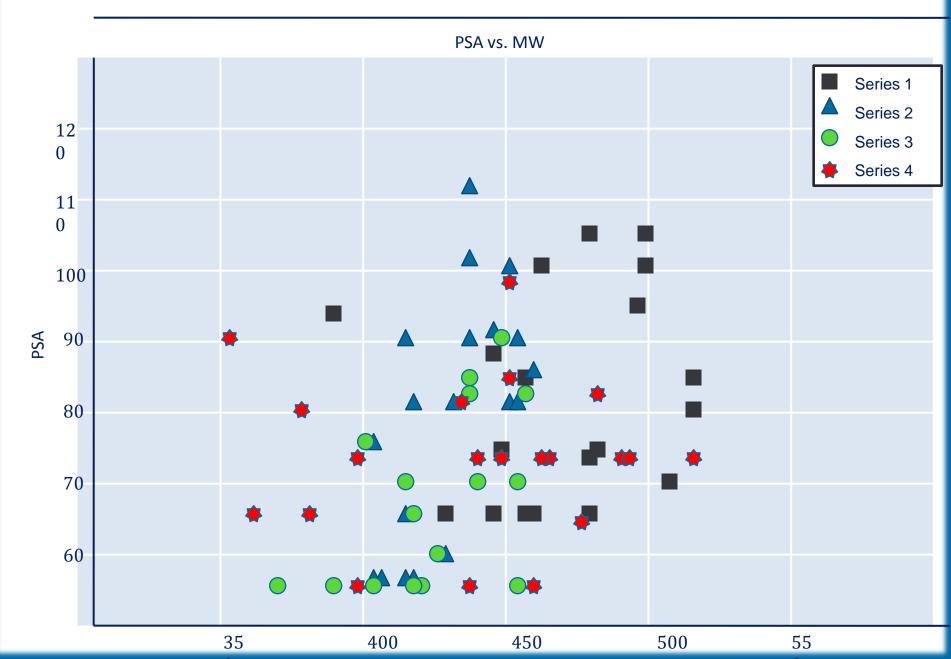



72 hits, not relative to CGRP

New Scaffold Design: cgrp-1 (example) One from 10 series proposed

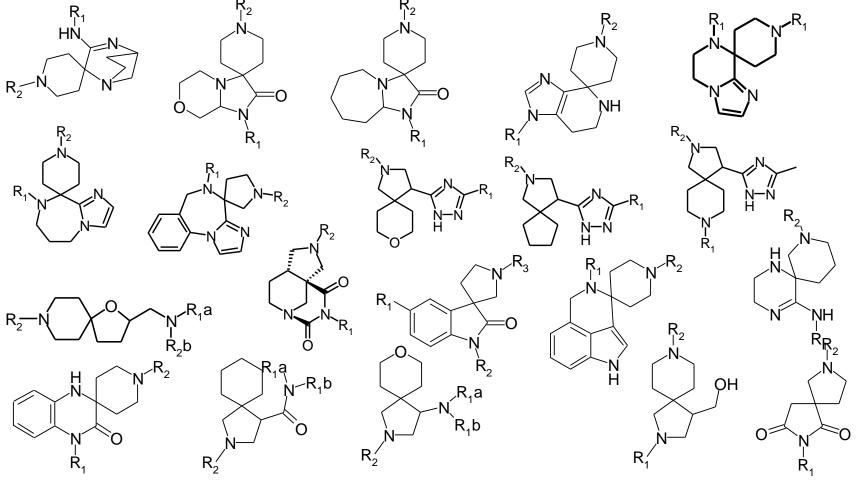
Examples of compound:




Similarity Analysis		×		
<u>File E</u> dit <u>T</u> ask T <u>o</u> ols <u>H</u> elp				
Select the candidates of interest: Similarity Score				
└ ≥ 99 (most similar)	0	-		
厂 95-98	0			
□ 90-94	0			
□ 85-89	0			
□ 80-84	0			
□ 75-79	7			
□ 70-74 □	22			
E 65-69	60			
🗆 60-64 (least similar)	323			
		-		
Get Substances Back				
Histogram Entries 1-9 of 9				

SciFinder Similarity Search Summary for scaffold cgrp-1

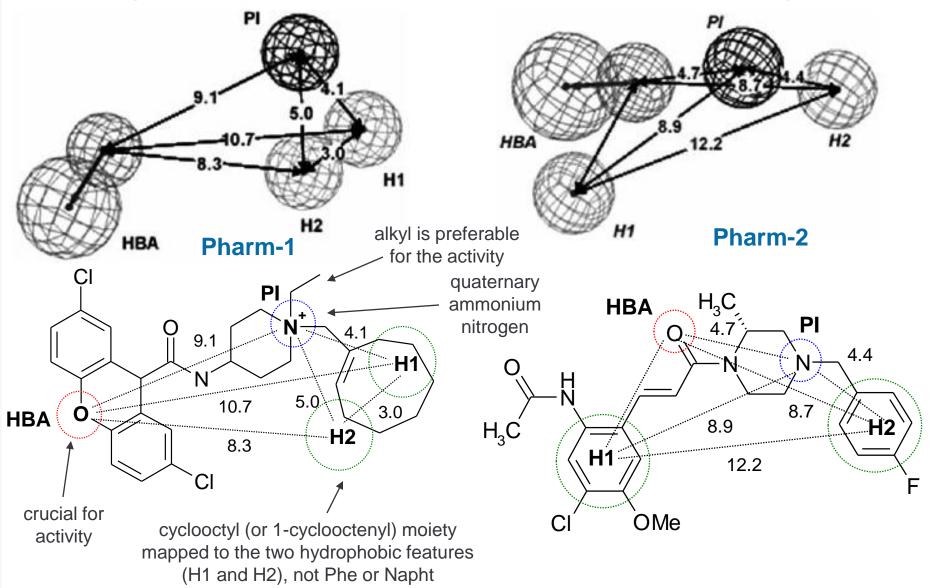
Property of Peptidomimetic Selected for Synthesis ClogP vs MV


Property of Peptidomimetic Selected for Synthesis PSA vs MW

Spiro-Compounds Libraries for PPI Biased HTS

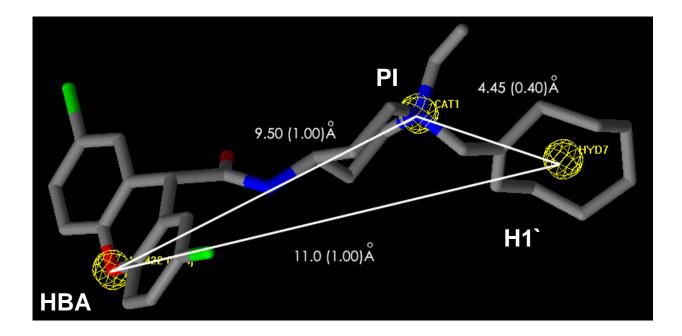
The goal of our work here is to provide a biologically relevant scaffold that allows for the incorporation of diversity elements that increase biological activity in targeted protein systems

*We have developed new spiro-based scaffolds that has at least two diversity points that are spatially arranged by the spirocyclic nature of the scaffolding such that the diversity elements are precise



~ 350 new scaffolds proposed; Library contains 5.5K Spiro-compounds

Pharmacophore Model Generation for CCR1 antagonists ChemDiv Proposal

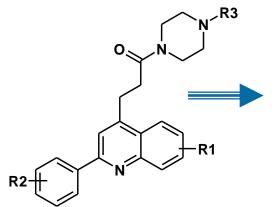

Pharmacophore:

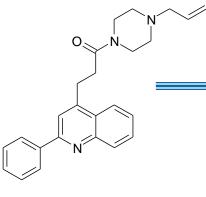
one hydrogen-bond acceptor, one positive ionizable and two hydrophobic groups

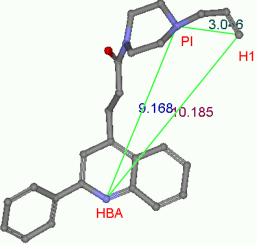
3D-Pharmacophere Models for CC Chemokine Receptor 1 Antagonists. Medicinal Chemistry, 2009, 5, 318

ChemDiv Pharmacophore Models

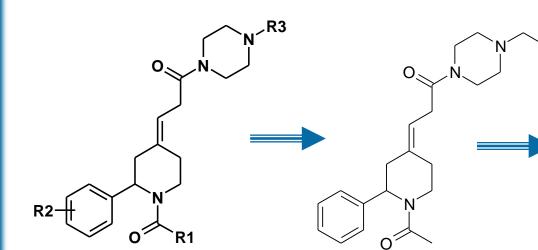
three-centered pharmacophore:

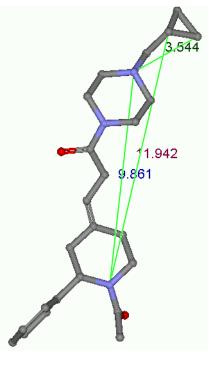

distances between HBA and PI as well as HBA and H1 are the same as for Pharm-1;


the distance between PI and H1` is slightly longer than for Pharm-1, therefore H1` is positioned right between H1 and H2 covering the both hydrophobic areas;

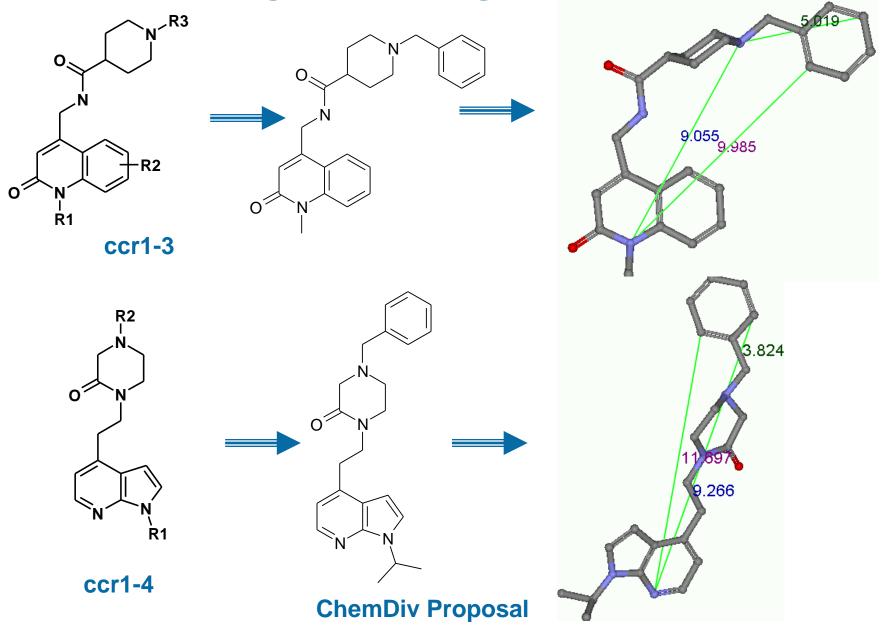

prediction power is quite comparable with Pharm-1; this Pharmacophore is currently under evaluation and optimization;

ChemDiv Pharmacophore is similar to Pharm-2


Scaffold Design According to Pharmacophore -1

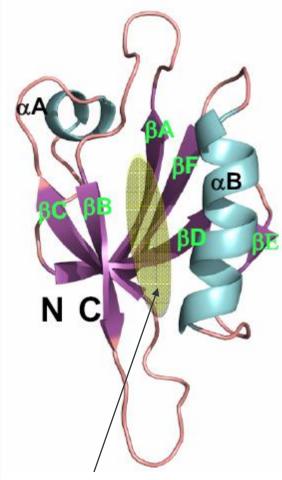


ccr1-1



ccr1-2

ChemDiv Proposal

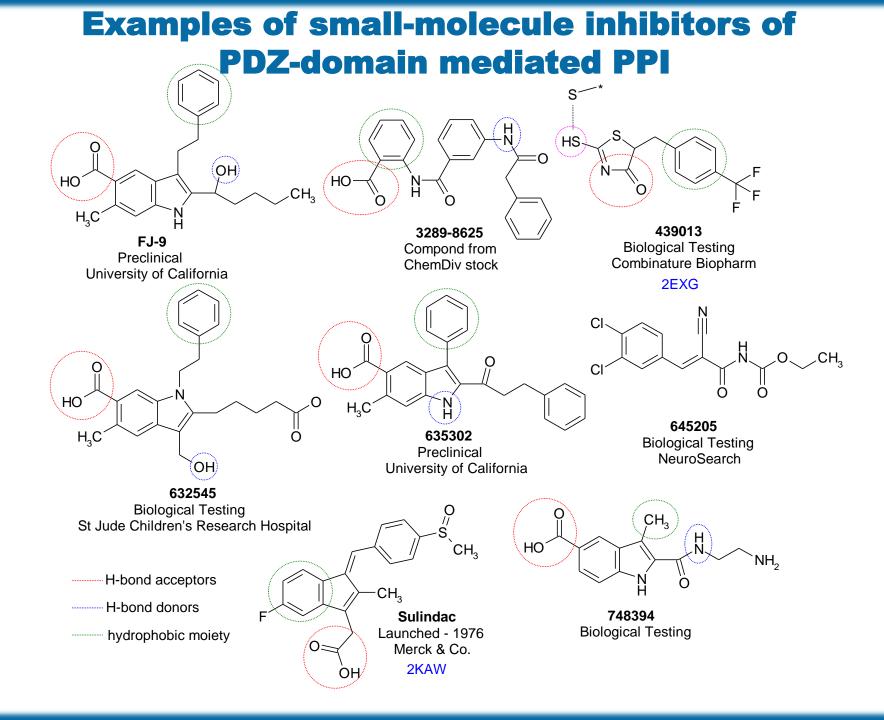

Scaffold Design According to Pharmacophore -2

Inhibitors of PDZ-domain mediated PPI

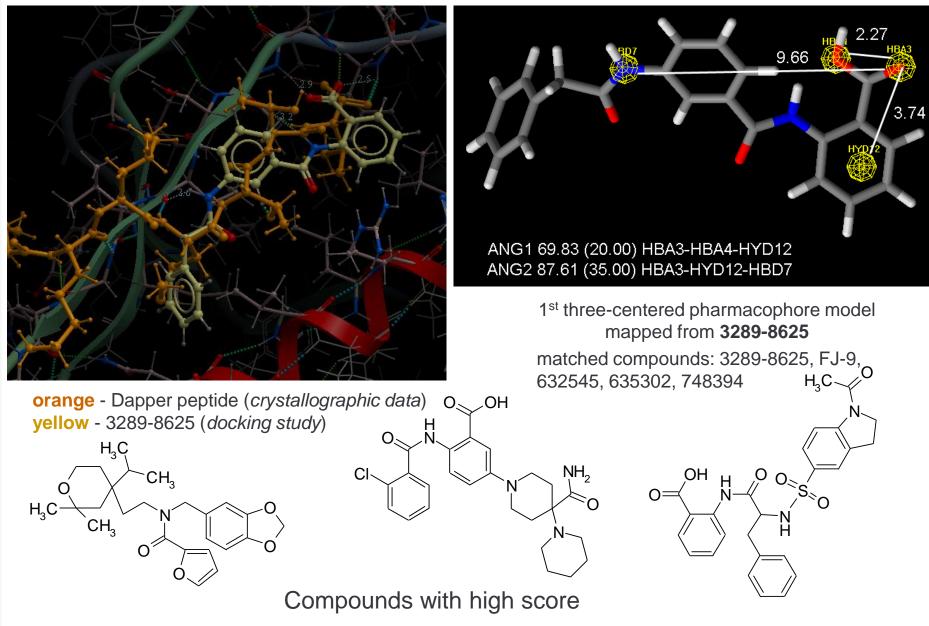
PDZ domain-containing proteins

more than **200** structures of PDZ domains (~80-100 AA) - either the PDZ domains alone, their complexes with binding partners, or PDZ-PDZ dimers - have been determined by NMR and X-ray crystallography

Binding site is in the groove between the β1 strand and the α3 helix structures

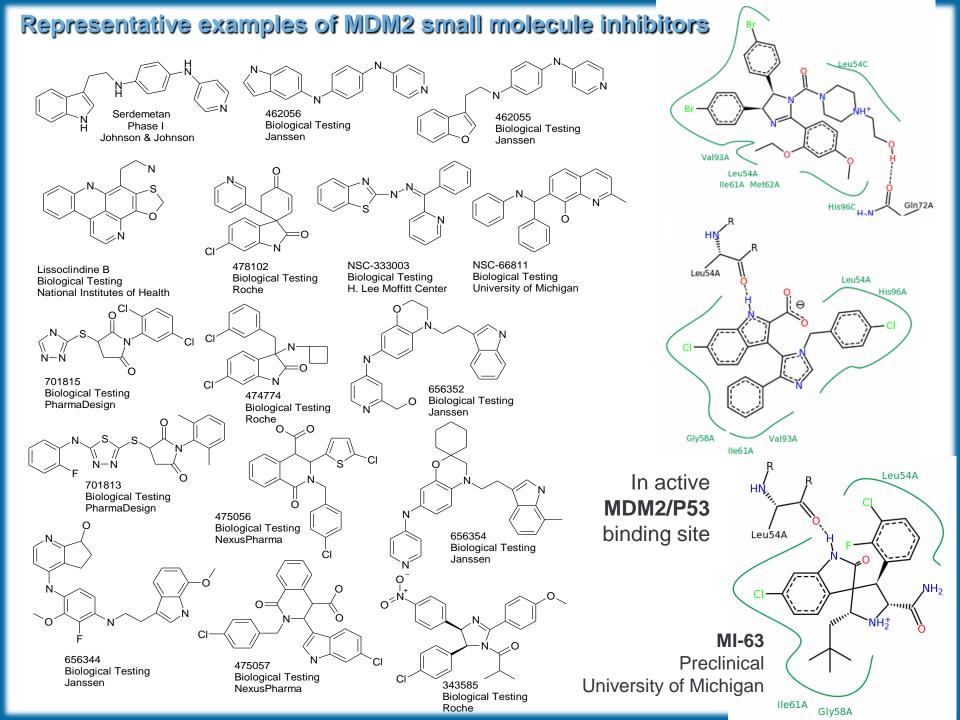

CANONICAL PDZ DOMAINS

PDZ domains are usually composed of 5 or 6 β -strands (β A ~ β F), a short α -helix (α A) and a long α -helix (α B);


► the *N*- and *C*-termini of canonical PDZ domains are in proximity to each other on the opposite side from the peptidebinding site in a *groove* between the α B-helix and β B-strand structures

the binding site in the groove shares a highly conserved carboxylate-binding loop (R/K-XXX-G-Φ-G-Φ motif, where X is any amino acid residue and Φ is hydrophobic residues located before the βB strand). This loop region of PDZ domain plays a key role in ligand binding

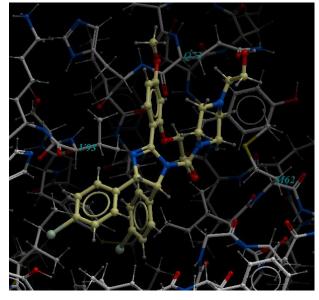
► a highly conserved positively charged residue (*e.g.* Arg318 of PDZ) and the main chain amides of the -**GΦGΦ**- motif form hydrogen bonds with the terminal carboxylate group of C-terminal ligand side

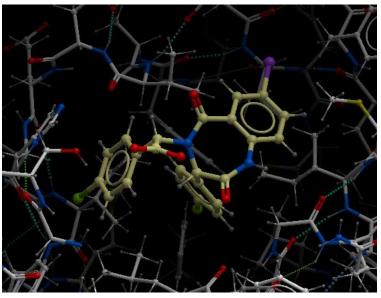


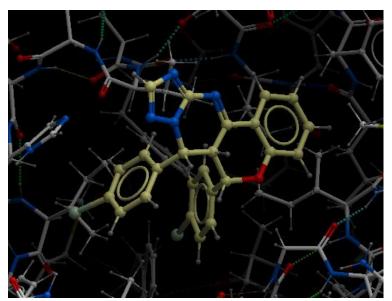
ChemDiv PDZ Pharmacophore Models

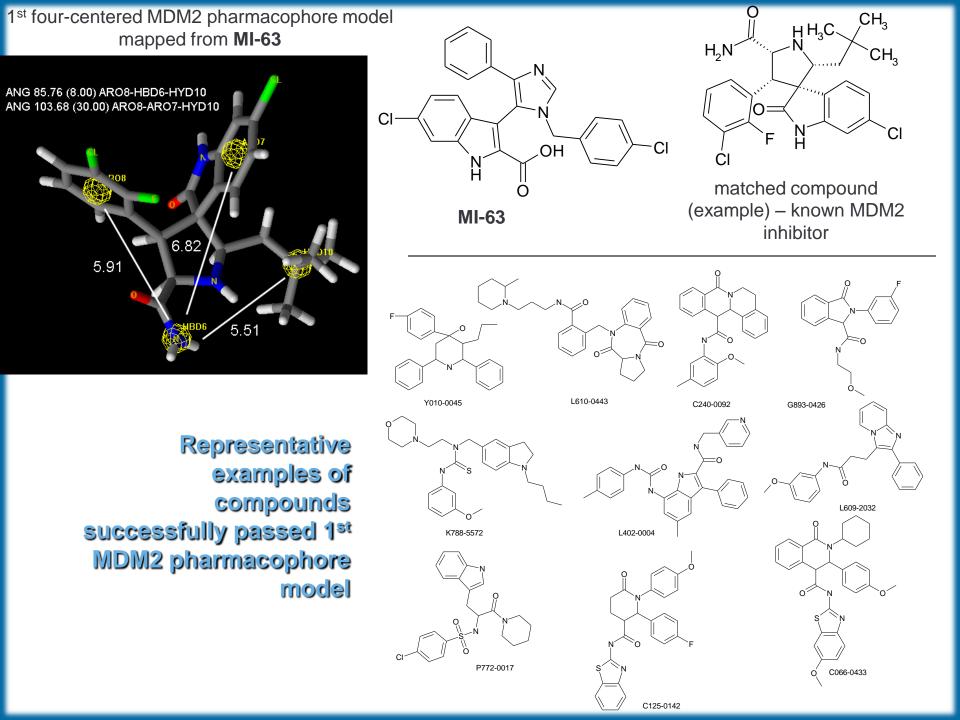


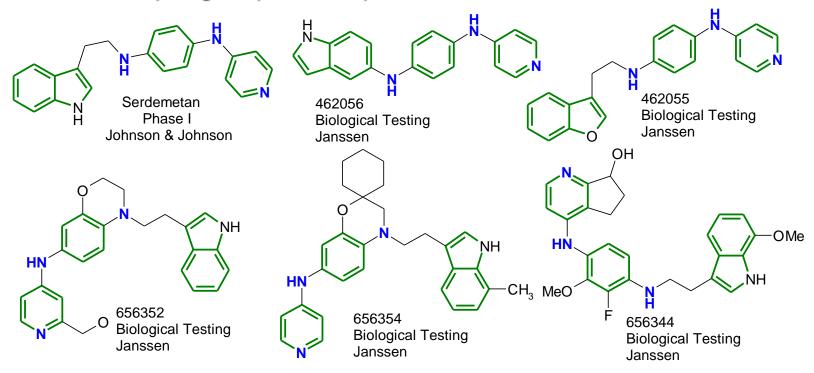
~ 250 new scaffolds proposed; Library contains 5.2K compounds

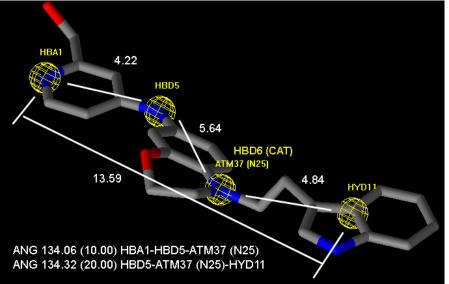

Inhibitors of MDM2/P53 interaction


Examples of crystallographic data obtained for several MDM2 inhibitors

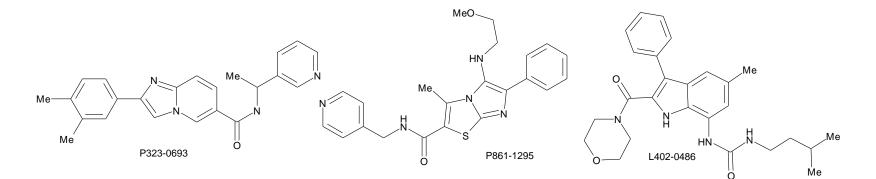


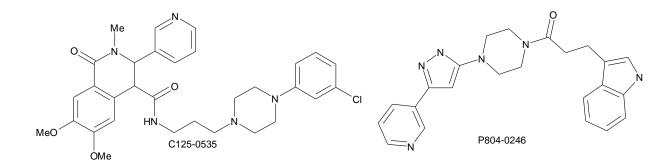

3LBL (MI-63)

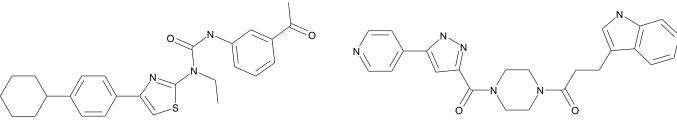

1RV1



Topological pharmacophore for several MDM2 inhibitors

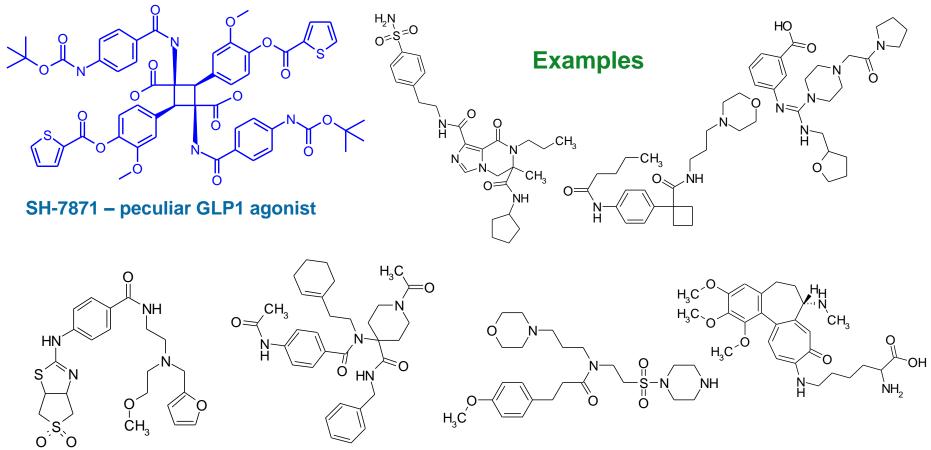





2nd four-centered MDM2 pharmacophore model mapped from 656352

all the presented compounds are mapped well

Representative examples of compounds passed 2nd MDM2 pharmacophore model

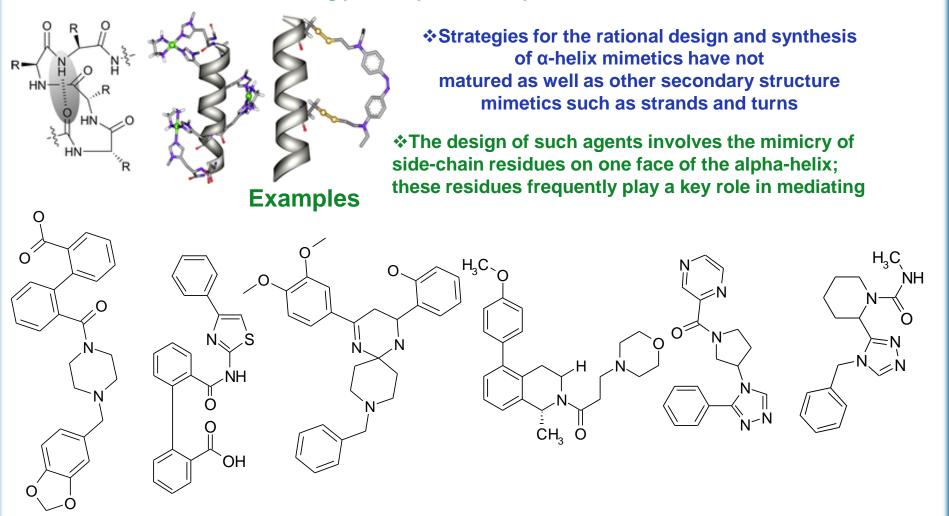

C301-6991

G639-3495

Other types of PPI Inhibitors

Set of Eccentric Compounds

GLP-1 receptors represent the promising and the most poorly druggable PPI targets


Sub-library contains 7.0K eccentric (nonreactive !) compounds

Contemporary medicinal chemistry faces diverse challenges from several directions, including the need for both potency and specificity of any therapeutic agent; the increasingly demanding requirements of low toxicity shown across all patients treated; and the need for novelty in intellectual property, given the extensive use of benzenoid and heteroaromatic ring systems in numerous patents. Increasingly, such challenges are being met by a shift to new and/or **unusual ring systems** (scaffolds) that lie outside the field of (hetero)aromatic systems

Marson CM. New and unusual scaffolds in medicinal chemistry. Chem Soc Rev. 2011; 40(11):5514

Set of Shape (helix, beta-sheet, strand, loop) Mimetics

*The α-helix is the most abundant secondary structural element in proteins and is an important structural domain for mediating protein–protein and protein–nucleic acid interactions

~ 400 new scaffolds proposed; Library contains 10K Shape-mimetics

Examples of PPI Targeted Chemistry & Libraries (ChemDiv's Experience)

Chemokine pGPCRs: CCR1, CCR2, CCR3, CCR4, CCR5, CCR7, CCR8, CXCR1, CXCR2, CXCR3, CXCR4;

Other pGPCRs: Galanin Gal1, Gal3; Bradykinin B1, B2; Neurotensin NT1, NT2; Orexin OX1, OX2; Opioid-like ORL-1; Tachykinin NK1, NK2, NK3; Bombesin BB1, BB2, BB3; Urotensin UTR2; Protease-activated receptor 1; Glucagon GR; Glucagon-like GLP1; Vasopressin AVPR; etc.

Integrins: alphallb/beta3 (Fibrinogen), alphaVbeta3 (Vitronectin), alpha4beta1, etc.

Heat Shock Proteins: HSP70, HSP90

Apoptosis: BCL-2, BCL-w, BCL-xl, MCL-1, IAP1, IAP2, XIAP, caspase-3, etc.

Pathways: Hedgehog Hh, Smo; WNT; WNT – beta-catenin; Notch, etc.

Our Expertise in Non-Peptide Peptidomimetic Library/Compound Design

Tsaloev A., Ilyin A., Tkachenko S., Ivachtchenko A., Kravchenko D., Krasavin M. Cyclic products of the Ugi reaction of aldehydo and keto carboxylic acids: chemoselective modification. *Tetrahedron Letters*. 2011, 52: 1800–1803.

Kysil V., Khvat A., Tsirulnikov S., Tkachenko S, Williams C., Churakova M., Ivachtchenko A. General Multicomponent Strategy for the Synthesis of 2-Amino-1,4-diazaheterocycles: Scope, Limitations, and Utility. *European Journal of Organic Chemistry*. 2010; 1525–1543.

Kysil V.M., Khvat A., Tsirulnikov S., Tkachenko S., Ivachtchenko A. Multicomponent approach to unique 1,4-diazepine-2-amines. *Tetrahedron Letters*. 2009; 50(24): 2854-2856.

Balakin K.V., Ivanenkov Y.A., Tkachenko S.E., Kiselyov A.S., Ivachtchenko A.V. Regulators of chemokine receptor activity as promising anticancer therapeutics. *Current Cancer Drug Targets*.
 2008; 8(4): 299-34.

Kiselyov A.S., Tkachenko S.E., Balakin K.V., Ivachtchenko A.V. Small-molecule modulators of Hh and Wnt signaling pathways. *Expert Opinion on Therapeutic Targets*. 2007; 11(8): 1087-1101.
Savchuk N.P., Tkachenko S.E., Balakin K.V. Design of pGPCR-targeted Libraries. In Rognan D., ed. *Ligand Design for G Protein-coupled Receptors*. Methods and Principles in Medicinal Chemistry (Volume 30). Weinheim: Wiley VCH. 2006, pp. 137-164.
Kysil V., Tkachenko S., Khvat A., Williams C., Tsirulnikov S., Churakova M., Ivachtchenko A. TMSCI-Promoted Isocyanide-Based MCR of Ethylenediamines: an Efficient Assembling of 2-Aminopyrazine Core. *Tetrahedron Letters*, 2007; 48(36): 6239-6244.

Thank You!!!