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Introduction 

Owing to historic inefficiency of mass random bioscreening, the current paradigm suggests that 

target-specific and pharmacokinetic properties of small molecule libraries should be addressed as early 

as possible in the discovery process. Computational medicinal chemistry can address this problem at the 

level of pre-synthetic library design. A number of advanced in silico methods have recently been 

developed and applied to combinatorial templates to enhance their target-specific informational content. 

Appropriate strategies for the design of combinatorial libraries are developed in accordance with the 

target, disease area, resources on hand and the specific project goals. 

In this description, we present a rational, practical approach to the design of GPCR-targeted 

combinatorial library. The goal of the combinatorial synthesis planning strategy presented here is to 

construct an algorithm utilizing simple, automated procedures for designing combinatorial libraries that 

are expected to show GPCR-activity. 

 

1. GPCRs as promising drug target 

The superfamily of G-protein-coupled receptors (GPCRs) is a diverse group of transmembrane 

proteins crucial to eukaryotic cellular signalingi. GPCRs initiate cascades of cellular responses to 

diverse extracellular mediators and are involved in all common human diseases. Nearly 40% of 

marketed drugs act through modulation of GPCR functionsii and up to 70% of novel therapeutics in 

development target known GPCRsiii. In addition, several hundred “orphan” GPCRs (which have no 

natural ligands identified as yet), are the focus of an intense drug discovery effort in many programs. 

Characterization of orphan GPCRs will substantially facilitate research in human physiology and 

pharmacology. GPCR family consists of seven basic classes: Rhodopsin- and Secretin-like receptors, 

Metabotropic glutamate and Fungal pheromone receptors, cAMP receptors, Ocular albinism proteins 

and Frizzled/Smoothened subfamily. All the classes listed are additionally subdivided into several 

categories, for example, Rhodopsin-like GPCRs include amine subclass (Muscarinic acetylcholine, 

Dopamine, Histamine, Serotonin, Bradykinin, Adrenoceptors, etc.), peptide subclass (Angiotensin, 

Chemokine, Endothelin, Neurotensin, Opioid, Somatostatin, Tachykinin, Vasopressin-like, etc.), 

Nucleotide-like receptors (Adenosine and Purinoceptors) and other subclassesiv. 
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The key to harnessing the clinical potential of particular GPCRs lies in the ability to elucidate 

their tissue- and disease-specific functions and identify the selective ligands for these receptors. The 

optimal ligands would be the potent small molecules with ADME/Tox properties required for the orally 

available drugs. Specifically, the optimal ligands need to possess high affinity and specificity for the 

target protein, and reasonable membrane permeability for biological activity in whole cell assays and in 

vivo models. The prime source of drug candidates is the focused small molecule libraries developed 

against particular receptors which are often compiled into protein class “GPCR-targeted libraries”. Such 

libraries are being built by drug discovery companies in house and are available commercially from 

medicinal chemistry companies. Due to significant diversity of natural GPCRs ligands and the 

complexity of downstream events of GPCR signaling, the optimal choice of GPCR library construction 

strategy represents a non-trivial and highly important problem. 

 

2. Neural networks in the design of GPCR-targeted library 

There are several approaches to the design of GPCR-focused compound libraries, ranging from 

2D simulation algorithms to the analysis of ligand receptor spatial arrangement and neural network (NN) 

learning QSAR systems. Over the last years, the methods based on neural networks became popular due 

to their efficiency in solving the problem. Several recent studies described successful employment of 

neural network methods for segregation of pharmaceutical compounds in categories based on different 

propertiesv. Recently, we have applied NN classification methodology for property-based design of 

GPCR-targeted libraryvi. In particular, we have found that a proper combination of specific 

physicochemical allows to successfully differentiating GPCR ligands from compounds active against 

other target-specific classes. Using these findings, the NN classification models were created with 

excellent discriminatory power. We have also attempted to solve the next level, more difficult problem: 

differentiation between specific classes of GPCR ligands. The key goal of vii was to develop in silico 

procedure for the design of small-molecule libraries that would show a receptor-specific GPCR activity. 

In the fundamental work viii we have comprehensively investigated and reviewed peptidergic G-protein 

coupled receptors (pGPCRs), their small-molecule modulators as well as the related structure-based 

design of such agents. 

Fundamentally, neural network (NN) modeling allows optimizing a large number of input 

parameters in different areas of NN applications. In drug development this property of NNs is used in 

"property-based design" approach, by analogy with the terminology proposed earlierix. NN approach is 

an efficient tool for constraining the size of virtual compound libraries designed for primary 

bioscreening with target-specific activity. The property-based approach is an alternative to a variety of 

more broadly used target- and ligand-structure focused design methods. Despite of its track record of 

success for certain targets, target-focused design has serious drawbacks. Namely, these are an inability 

 
 



 

to accurately estimate all target-ligand interactions, significant computation time, the ignorance of water 

microenvironment, the difficulties in correct generation of 3D structures and in the analysis of all 

possible spatial conformations of it, etc. Ligand structure-based methods are indispensable in exploring 

the feasible chemistry space when many ligands for a 

target are known and the active chemotypes are defined. However, the method is poorly suitable for the 

discovery of novel lead chemotypes. It is well documented that most popular ligand structure-based 

methodologies (such as bioisosteric approach, or similarity-based methods) are skewed toward the old 

scaffolds. In general case, the target- and ligand structure-based technologies can not adequately address 

all the real problems of rational drug design, particularly those connected with the virtual screening of 

large compound databases or with the discovery of novel lead chemotypes. A similarity of molecular 

physico-chemical properties represents an alternative design basis for target specific libraries. The 

underlying theory 

states that every group of active ligand molecules can be characterized by a unique combination of 

physico-chemical parameters differentiating it from other target-specific groups of ligands. As a rule, 

receptors of one type share the structurally conserved ligand binding site. The structure of this site 

dictates the bundle of properties a receptorselective ligand should possess, such as specific steric, 

lipophilic, H-binding, and other features influencing the pharmacodynamic requirements. This theory is 

realized in computation models for quantitative discrimination between the ligand groups. Whenever a 

large set of active ligands is available for a particular receptor, the mean values of some key molecular 

properties can be considered as optimal and characteristic of this group of ligands. Based on these 

values, one can generate a quantitative discrimination function that permits the selection of a series of 

compounds to be assayed against the target. Finding such function is a key element for computational 

virtual screening programs. It is important for this function to be based on physico-chemical rather than 

on structural properties to be capable of suggesting novel lead chemotypes. 

 

2.1. Unsupervised Kohonen-based learning approach 

In most studies on application of neural networks in drug discovery, a supervised learning 

strategy was used. The alternative unsupervised learning method becomes popular for comparative 

analysis and visualization of large ligands data setsx. For instance, benzodiazepine and dopamine data 

sets were compared recently with an implementation of a Kohonen networkxi. In another study, a dataset 

of 31 steroids binding to the corticosteroid binding globulin (CBG) receptor was modeledxii. Kohonen 

self-organizing maps were used for distinguishing between drugs and non-drugs with a set of descriptors 

derived from semi-empirical molecular orbital calculationsxiii. It was emphasized that Kohonen map-

based classification does not depend on the definition of a non-drug, non-ligand data set, and, therefore, 

the virtual screening of active compounds can be conducted more objectively. This property of 

 
 



 

unsupervised Kohonen learning strategy is particularly important in cases when the negative training set 

is unavailable or hard to define. In this work, we used the unsupervised learning methodology for 

differentiation between various receptor-specific groups of GPCR ligands. With the data available, only 

positive training selections of molecules can be unambiguously identified, namely, the groups of ligands 

to particular GPCRs. The definition of a negative training set would be very complicated and, probably, 

unreliable, as only a few compounds with particular receptor-specific activity have been tested against 

all groups of GPCRs. This limitation restricts the application of multi-layer neural networks with a 

supervised learning procedure as an error back-propagation learning algorithm; an unsupervised 

approach is required. Among the unsupervised methods, we chose Kohonen neural network as the one 

with the most appropriate learning strategy for GPCR-targeted library design. 

 

3. Concept and Applications 

GPCR-targeted library design at CDL involves: 

• A combined profiling methodology that provides a consensus score and decision based on various 

advanced computational tools: 

1. Unique bioisosteric morphing and funneling procedures in designing novel potential GPCR ligands 

with high IP value. We apply CDL’s proprietary ChemosoftTM software and commercially available 

solutions from Accelrys, MOE, Daylight and other platforms. 

2. Neural Network tools for target-library profiling, in particular Self-organizing Kohonen maps, 

performed in SmartMining Software. We have also used the Sammon mapping and Support vector 

machine (SVM) methodology as more accurate computational tools to create our GPCR-focused library. 

3. In several cases we have used 3D-molecular docking approach to the focused library design. 

4. Computational-based `in silico` ADME/Tox assessment for novel compounds includes prediction of 

human CYP P450-mediated metabolism and toxicity as well as many pharmacokinetic parameters, such 

as Brain-Blood Barrier (BBB) permeability, Human Intestinal Absorption (HIA), Plasma Protein 

binding (PPB), Plasma half-life time (T1/2), Volume of distribution in human plasma (Vd), etc. 

A general approach to limiting the space of virtual libraries of combinatorial reaction products 

consists of implementation of a series of special filtering procedures.  The typical filtering stages are 

briefly summarized in Figure 1.  A variety of "Rapid Elimination of Swill" (REOS) filters is used to 

eliminate compounds that do not meet certain criteriaxiv. 

 
 



 

 
Figure 1.  General procedures of selection of a rational target-specific subset within an initial virtual 

combinatorial library 

 

These criteria can include: (1) presence of certain non-desirable functional groups, such as 

reactive moieties and known toxicophores; (2) molecular size, lipophilicity, the number of H-bond 

donors/acceptors, the number of rotatable bonds.  At the next stage the design focuses on “lead” and 

“drug-likeness” of combinatorial moleculesxv.  The ADME/Tox properties of screening candidates 

should be taken into consideration as early as possiblexvi.   Additional filters are therefore used for in 

silico prediction of some crucial ADME/Tox parameters, such as solubility in water, logD at different 

pH values, cytochrome P450-mediated metabolism and toxicity, and fractional absorption.  Optimization 

of structural diversity is another natural and very important way to constrain the size of combinatorial 

libraries (reviewed in xvii). The fundamentals for these applications are described in a series of our recent 

articles on the design of exploratory small molecule chemistry for bioscreening [for related data visit 

ChemDiv, Inc. online source: www.chemdiv.com]. Our multi-step in silico approach to GPCR-focused 

library design is schematically illustrated in Fig. 2. 

 

Figure 2. Multi-step computational approach to GPCR-targeted libraries design 

 

This common approach was effectively applied for the developing of our GPCR-focused, in 

particular for Serotonin, Dopamine, Opioid, Endothelin, Cannabinoid, Bradykinin, Chemokine 

receptors, Adrenoceptors, etc. 
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• Synthesis, biological evaluation and SAR study for the selected structures: 

1. High-throughput synthesis with multiple parallel library validation. Synthetic protocols, building 

blocks and chemical strategies are available. 

2. Library activity validation via bioscreening; SAR is implemented in the next library generation. 

 

3.1. GPCR-related reference database 

Our reference set included 12639 GPCR-active agents with experimentally shown activity 

against over 100 different GPCRs (Table I). The set contained compounds from different stages of 

clinical trials, marketed drugs and patented NECs, sourced from Ensemble database of known 

pharmaceutical agents compiled from the patent and scientific literaturexviii. Molecules were filtered 

based on molecular weight range (150-700) and atom type content (only C, N, O, H, S, P, F, Cl, Br, and 

I allowed). 

 

Table I. Reference database of GPCR ligands 

 
N.B. The total number of compounds is not equal to the sum of the shown values, as some compounds are not selective and 

manifest activity against more than one target 

 

 
 



 

Diversity parameters for this reference database are shown in Table II.  As evident from the 

number of screens, the number of core heterocyclic fragments, and the diversity coefficients (all these 

parameters are calculated using the Diversity modulexix of the ChemoSoftTM software tool), the studied 

compound database has high structural diversity and can be considered to be a good representation of 

known GPCR-active compounds. 

 

Table II. Diversity parameters of the studied database 

Parameter Value 

Total number of compounds 12540 

No. of screensa 13503 

Diversity coefficientb 0.822 

No. of core heterocycles 1131 
a screens are simple structural fragments, centroids, with the topological distance equal to 1 bond length between the central 

atom and the atoms maximally remote from it. 
b cosine coefficients are calculated, and the sums of non-diagonal similarity matrix elements are used in ChemoSoftTM 

program as a diversity measure; the diversity coefficient can possess the value from 0 to 1, which correspond to minimal and 

maximal possible diversity of a selection. 
 

3.2. Molecular descriptors 

The Kohonen-based model was based on a pre-selected set of molecular descriptors. Sixty 

molecular descriptors describing the important molecular properties, such as lipophilicity, charge 

distribution, topological features, steric and surface parameters were explored. The number of 

descriptors was reduced by the omission of the low-variable and highly correlated (R > 0.9) descriptors. 

To further reduce the descriptor space, we performed a principal component analysis using SmartMining 

software suitexx. Eventually, seven descriptors were selected as the most relevant and further used in the 

neural network experiments (Table III). The chosen descriptors are readily computable and, in 

combination, provide a reasonable basis for the assessment of the particular GPCR activity potential. 

This set of descriptors defines a bundle of most relevant factors affecting the ability of a compound to 

possess GPCR-activity: lipophilicity, molecular surface area and size, H-binding potential and surface 

charge properties. 

 

 

 

 

 

 
 
 



 

Table III. Molecular descriptors used for modeling 

 
 

3.3. Kohonen map generation 

In this work we have used the internally developed program included in CDL’s proprietary 

ChemoSoft™ software suite, for unsupervised learning and generation of Kohonen maps. A 15x15 node 

architecture was chosen in order to provide the studied molecules with optimal distribution space. The 

reference database was used for NN-training and Kohonen map generation (Figure 3). 
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Figure 3. 15x15 Kohonen network trained with seven selected descriptors for total reference database of 

GPCR-active agents (12K cmpds). The data have been smoothed 

 

 

As shown in figure 3, the GPCR ligands are widely distributed throughout the map as the 

irregularly shaped islands, with a trend towards the bottom of the map. The area occupied by the GPCR 

ligands is relatively large, which reflects their significant diversity. At the next step, we studied the 

distribution of different receptor-specific groups of GPCR ligands within the generated Kohonen map. 

These ligand groups appeared to be clustered at different distinct areas of the map. As an illustration, 

Figure 4a-d shows the distributions of four large GPCR-specific ligand groups. Interestingly, the active 

agents entering into clinical trials or launched drugs, usually gravitate towards the central parts of the 

corresponding receptor-specific sites on the map, while the peripheral positions are occupied by 

 
 



 

compounds at more earlier stages of development (data not shown). The Kohonen maps for particular 

receptor-specific groups of ligands can be used for predicting potential receptor-specific activity. Thus, 

the processing of a diverse exploratory compound library on this Kohonen map allows to distinguish 

between the specific compound subsets falling into particular receptor-specific areas. We suggest that 

the molecules from these subsets are more likely to be active against the corresponding receptors. 
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                                                     (c)                                                       (d) 

Figure 4. Distributions of four large GPCR-specific ligand groups within the Kohonen map. Other 

GPCR-groups, including Serotonin, Muscarinic M1, Opioid and Chemokine receptor antagonists, were 

also found to locate in a separate field within the map constructed, but they are not shown here 

 
 



 

 

Three-dimensional distribution plots of these ligand groups (Figure 5a-c) demonstrate 

statistically significant differences in their location. 

      
(a)                                                                  (b) 

 
(c) 

Figure 5.  3D diagrams of distribution of three target-specific groups of GPCR ligands on the Kohonen 

map: (a) Tachykinin NK1 Antagonists, (b) Muscarinic M1 Agonists, β3-Adrenoceptor Agonists 

 

3.4. Rational design of GPCR-specific combinatorial libraries based on the concept of privileged 

substructures 

As mentioned above, "GPCR-activity" assumed here as the ability of a small-molecule 

compound to be a successful ligand for a GPCR. Thus, within this section we clearly demonstrate the 

practical significance of the concept of privileged substructures in the identification of combinatorial 

building blocks for synthesis of GPCR-focused library rich in target-specific structural motifs. We also 

illustrate the novel and interesting possibilities associated with the property-based selection of reactants 

and products, using advanced machine learning strategies that have been developed to identify structural 

motifs which specifically interact with biotargets or target families using retrosynthetic analysis of 

existing knowledge bases and generation of specific molecular fragmentsxxi. Thus, a RECAP 

(Retrosynthetic Combinatorial Analysis Procedure) method was described based on fragmenting 

 
 



 

molecules around bonds which are formed by common chemical reactionsxxii. The main advantage of 

this approach is that the initial molecules are fragmented at several predefined bond types, all of which 

are amenable to combinatorial chemistry. Therefore, the resulting fragments represent direct precursors 

of building blocks for combinatorial library synthesis.  Though the RECAP technique is very useful in 

the design of combinatorial libraries, this pure retrosynthetic approach can lead to ungrounded 

simplification of some privileged scaffolds.  For example, according to RECAP rules, biphenyl fragment 

is dissected.  We have used a modified approach which takes into consideration not only the chemistry-

derived rules but the distinctive structural features of some GPCR privileged scaffolds. Along with the 

cleavage rules, we specified several bond types, which are left intact.  Thus all mono- and biheterocyclic 

structures, benzylheterocycles, spirocyclic fragments, biphenyl and diarylmethane fragments and their 

heterocyclic bioisosteres, as well as all ring fragments are considered as indestructible. 
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Figure 6.  Main chemical bond cleavage types 

 

The main chemical bond types at which to cleave a molecule are shown in Figure 6. Hydrazides, 

hydrazones, ketoximes, ureas, uretanes, esters of hydroxamic acids are cleaved in the similar manner.  If 

the terminal fragment to be cleaved contains only small functional groups with molecular weight less 

than 45, the fragment is left uncleaved.  The non-terminal cleaved fragments with molecular weight less 

than 45 are eliminated.  The main reasons for this are to avoid generating very simple fragments, and to 

obtain more "drug-like" fragments.  An example of a typical cleavage is given in Figure 7, where an 

initial molecule, Alfuzosin, with three cleavage points and three resulting fragments are shown. 
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Figure 7.  Results of dissection of α1-adrenoceptor antagonist Alfuzosin 

It is important to note that the applied rules are not the pure retrosynthetic rules.  The described 

structure dissection procedure also takes into account the structures of typical privileged motifs and is 

directed to the search of structural chemotypes with selective action against particular receptors. As 

mentioned in the previous section, our method is based on extracting information from large reference 

databases of active agents which show any target-specific activity. The reference database of GPCR-

active agents (see section 3.1) was then fragmented using a structure splitting package of the 

ChemoSoftTM software and the cleavage rules described above.  The procedure is automatic for each 

particular rule, and it results in a database of final fragments for which no further cleavage is possible.  

In this database, target-specific activity of a parental molecule is indicated for each fragment.  Table IV 

shows the numbers of fragments obtained from the initial database and for three arbitrary receptor-

specific groups of ligands. 

 

Table IV. The number of fragments obtained as a result of structure dissection procedure for the initial 

reference database 

 Fragments 
Unique 

fragments 

total fragmented 

database 
32756 7425 

fragmented set of 

Dopamine D2 agonists 
1839 452 

fragmented set of 

Tachykinin NK1 

antagonists 

5211 1400 

fragmented set of 

Cannabinoid 

agonists/antagonists 

294 120 

 
 



 

 

We also have shown that the privileged substructures, which are likely associated with target-

specific activity of the uncleaved compounds, are present in fragmented GPCR-specific groups of 

ligands. As an example, we have used the fragmented database of Dopamine D2 agonists.  This 

database, obtained by fragmenting 89 intact Dopamine D2 agonists, contains 1839 non-unique and 452 

unique final retrosynthetic fragments.  It was clustered using a method based on the distance matrix 

derived from Tanimoto similarity coefficients.  As a result, several clusters containing more than five 

structures were generated, which represent the most frequently occurring fragments in the Dopamine D2 

database. 

To correctly address the problem of identification of target-specific privileged motifs, one should 

take into account the phenomenon of bioisosterismxxiii.  Thus several different bioisosteric structures can 

constitute only one distinct privileged structural motif. In order to include all possible bioisosteric 

analogs into one cluster, we have used a special algorithm of ChemoSoft™ based on a collection of 

rules for bioisosteric conversions described in literature.  All bioisosteric analogs are considered similar 

with similarity coefficient 1 if they have identical substituents around the central bioisosterically 

transformed fragment. To facilitate analysis of the association of specific fragments (possible privileged 

motifs’) with a given target-specific dataset, we constructed a characteristic occurrence metric. For each 

privileged motif obtained after the cleavage procedure, we determined it’s occurrence in each GPCR-

specific data set, and then compared this to the frequency of occurrence in the entire fragmented 

database.  To construct the characteristic occurrence (CO) metric for a fragment in a particular set, we 

calculated the percentage ratio of the fragment’s occurrence in the set to the total number of compounds 

in this set.  To quantitatively assess an enrichment of a particular activity set with a specific fragment, 

we used the CO of this fragment in a particular compound set relative to its CO in the whole fragmented 

data set.  The ratio of these characteristic occurrences of any fragment can serve as a measure of 

uniqueness of the fragment’s distribution in the corresponding receptor-specific fragment base compared 

to the total database. 

As an illustration, Table V shows four heterocyclic structures that were present in the two data 

sets, the fragmented database of Dopamine D2 receptor antagonists and the total fragmented database, 

with at least five-fold difference in the CO values, CODop_D2/COtot > 5.  Such a difference gives a 

reasonable indication of whether a fragment is specific for this particular activity group or whether it is 

widely distributed in many unrelated groups.  In fact, the fragments shown in Table V represent 

privileged substructural motifs for Dopamine D2 receptor antagonists. 

 

 

 

 
 



 

Table V.  Some privileged structural motifs of Dopamine D2 agonists 

Fragment 
COtot, 

% 

CODop_D2, 

% 

CODop_D2/

COtot 

C,N C,N

C,N

N
H

 

0.42 10.18 24.2 

NH2

A

O

 
0.59 3.34 5.7 

N

S NH2

 
0.21 2.41 11.5 

N

A
O

NH2

 

0.13 6.21 47.8 

 

In a similar manner, such privileged motifs can be identified for each GPCR-specific activity 

group.  The typical number of privileged substructures per group lies in the range of 5-20 for the studied 

GPCR-specific compound sets. 

The N-arylpiperazine fragment shown in Table V represents an interesting structural motif with 

an expressed mixed type of receptor-specific activity.  Compounds containing this fragment can be 

active against Dopamine D2, Tachykinin NK1, Vasopressin V1A/V2 and other GPCRs (see also Table 

VI in the following section).  Such activity with respect to the entire GPCR family substructures 

represents very valuable objects in combinatorial synthetic strategies.  Their ability to serve as selective 

ligands against different receptors can be modulated with the proper selection of other parts of the 

molecule. 

 

3.5. Privileged versus peripheral retrosynthetic fragments 

Analysis of GPCR ligands allows us to identify two principal categories of retrosynthetic 

fragments.  The main category is the privileged fragments, described in the previous section.  In most 

cases, the occurrence of a privileged motif is crucial for the target-specific activity of a compound.  It 

should be noted that identification of privileged target-specific motifs is rather a technical problem, in 

the sense that whenever a large enough reference database of active agents and the appropriate chemical 

 
 



 

database management tools, are available (such as chemical database, clustering package module, 

bioisosteric similarity module etc.) privileged target-specific substructures can be identified. 

Peripheral structural motifs are a second principal category of retrosynthetic fragments.  The 

presence of such fragments usually does not substantially influence the target specificity of a compound 

(with exception of molecules containing the privileged core motifs with multiple target selectivity), but 

can seriously affect the protein-ligand binding affinity, as well as its pharmacokinetic properties.  In 

contrast with privileged motifs, the peripheral fragments belonging to a particular target activity class 

usually do not possess any structural similarity.  Thus several selective Dopamine D2 agonists have a 

distinct privileged substructure motif (N-arylpiperazine moiety) and different peripheral fragments 

highlighted in blue (Figure 8). 
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Figure 8.  Dopamine D2 agonists having a distinct N-arylpiperazine privileged motif and structurally different peripheral 

fragments 

Nevertheless, the structural peripheral fragments shown in Figure 8 have similar size, molecular 

topology, lipophilicity, number of H-bond accepting groups and number of rotatable bonds.  It can be 

concluded that peripheral structural motifs, being structurally different molecular fragments, can exhibit 

similar physico-chemical and spatial properties. 

 

3.6. Peripheral retrosynthetic fragments: How to measure the target-specific differences? 

In stage of our study, we seek to answer the following important question: whether we can 

quantitatively discriminate between different target-specific combinations of peripheral cleaved 

fragments based on their molecular properties, rather than on their structural dissimilarity.  To address 

this question, we also used an advanced data mining method based on artificial neural networks and 

unsupervised learning approach. Thus, we have successfully applied an advanced method of NN 

quantitative SAR and data visualization based on Kohonen self-organizing maps. A similar strategy was 

recently used and described in our work devoted to prediction of cytochrome P450-mediated 

metabolism of organic compoundsxxiv. In these experiments, we used the entire 7452-compound 
 
 



 

database of unique cleaved fragments.  Each fragment in this database is characterized by a defined 

profile of target-specific activity of its active compound-precursor, focused against 1 of more than 100 

different GPCR targets.  Molecular features encoding the relevant physicochemical properties of 

compounds were calculated from 2D molecular representations of the molecular fragments.  Fragment 

size, topological complexity, H-binding capacity and lipophilicity were the main contributors to the 

models generated. 

A self-organizing Kohonen map of the total database of cleaved retrosynthetic fragments 

generated as the result of an unsupervised learning procedure (data not shown), indicates that the 

cleaved fragments occupy a wide area on the map, characterized as the area of potential building blocks 

for combinatorial synthesis.  Studying the distribution of various target-specific groups of peripheral 

structural fragments in the Kohonen map yielded interesting results consistent with our intuitive 

hypothesis about similarity of physico-chemical properties between peripheral retrosynthetic fragments 

belonging to a particular target-specific category.  Most of the groups have distinct locations in specific 

regions of the map (Figure 9a-e).  The differences in location sites allow us to formulate the underlying 

principle, which can be used for selection preferred peripheral fragments for each particular receptor-

specific category: every group of peripheral structural fragments associated with defined target 

specificity can be characterized by a distinct and sometimes unique combination of physico-chemical 

parameters.  One possible explanation of this observation is that receptors of one type tend to share a 

structurally conserved ligand-binding site.  The structure of this site dictates the bundle of properties that 

a receptor-selective ligand should possess to properly bind the site.  These properties include specific 

spatial, lipophilic, and H-binding parameters, as well as other features influencing pharmacodynamic 

behavior.  On the other hand, the observed difference of physico-chemical properties for particular 

target-specific groups of peripheral fragments can result from different pharmacokinetic requirements 

for compounds acting on specific GPCR. 

 
 



 

 

 
(a) 

   
(b)                                                                (c) 

   
(d)                                                                (e) 

Figure 9. Distribution of five different target-specific groups of peripheral fragments within the 

Kohonen map: (a) Tachykinin NK1 antagonists (521 fragments), (b) Dopamine D2 agonists (113 

fragments), (c) Cannabinoid CB1/CB2 agonists/antagonists (89 fragments), (d) β3-Adrenoceptor 

agonists (294 fragments), (e) 5-HT1A agonists (354 fragments).  The data are in % (the total number of 

peripheral fragments in a receptor-specific group corresponds to 100%). 

 
 
 



 

The observed differences create a basis for a rational selection of building blocks for synthesis of 

combinatorial libraries enriched in target-specific motifs.  The quantitative structure-activity 

discrimination function found at this stage of our study can be used for effective search of reactive 

monomers possessing the desired physico-chemical and spatial parameters. 

To summarize this part of our work, the privileged motifs can be considered, in a general case, as 

a main category of molecular fragments playing an essential role in the target-specific activity of a 

compound.  On the other hand, the peripheral structural motifs are less important for target specificity 

and usually do not have any structural similarity, but, nevertheless, they are important for protein-ligand 

interactions and for a compound’s pharmacokinetic profile.  Modern chemical database management 

tools in combination with advanced methods of data mining permit effective identification of both 

privileged and peripheral molecular fragments.  After these fragments are identified for each target 

activity group, they can be readily transformed into chemical building blocks for generation of a virtual 

target-biased combinatorial library. 

 

3.7. Selection of Building Blocks 

Combinatorial building blocks containing the privileged target-specific or nonselective structural 

motifs constitute the main category of reagents for synthesis.  Based on statistical analysis of the total 

fragmented database, we created platforms of "privileged" core building blocks for all receptor-specific 

areas studied.  For each privileged substructure, we selected a set of closely related compounds 

containing this privileged fragment (or its bioisosteric analog) and one or more "points of diversity" for 

introduction of peripheral building blocks.  Examples of privileged structural motifs and the related core 

building blocks are shown in Table VI.  A significant step in selection of core building blocks is the 

estimation of IP potential of the resulting compounds using the Beilstein database based on a number of 

known structures for reported active compounds containing the particular substructure.  The next step in 

our selection procedure is related to assessment of synthetic accessibility (the third column in Table VI) 

and in generation of sets of assembling building blocks.  It is important to note that such reagents sets, 

which can be used for synthesis of core building blocks, cannot be formed with the use of pseudo-

retrosynthetic automatic approaches similar to RECAP.  In most cases, the trivial simple cleavage rules 

used in such algorithms do not correspond to the practical methods of synthetic assembling of complex 

privileged structures (examples 3 and 4 in Table VI). 

 

 

 

 

 

 
 



 

Table VI.  Examples of core and assembling building blocks structurally related to privileged motifs 
belonging to different target-specific ligand groups 
Privileged substructures 

(unselective/target 

selective) 

Core building blocks 

IP potential (Beilstein 

score) 

Assembling building blocks. Example of 

reaction. 

N
N

 
unselective* 

Dopamine D2 agonists, 

Tachykinin NK1 antagonists, 

α1 Adrenoceptor antagonists, 

PGE2 antagonists, 5-HT1D 

agonists, Vasopressin 

V1A/V2 antagonists, CCKB 

antagonists, 5-HT2A 

antagonists, Muscarinic M1 

agonists, etc. 

 

N
N

H

X
 

Low IP - 852 examples 

N
N

N

H

X  
High IP - 3 examples 

N
N

H

O

O

X

 
High IP - 8 examples 

R

N
N

RBr

N
N

X X

Pd/L
+

Base

 

[xxv] 

 

N
N

R

OTf

N
N

R

X X+
Pd/L

Base

 

[xxvi] 

N
O

 
unselective 

Dopamine D2 antagonists, 

Tachykinin NK3 antagonists, 

Neurokinin NK3 antagonists, 

etc. 

 

N
O

H

X

 
Low IP - 142 examples 

N
O

H

S
X  

High IP - 2 examples 

N
O

H

X

N

O

PG

+

Br

X

1) n-BuLi
  CeCl3

2)deprotection
 

[xxvii] 

 

O

O

CH3

 
target specific 

Tachykinin NK1 

antagonists 

O

O

O

O

X

X1

 
High IP - 11 examples 

 

O

O

1) MeMgCl

R1

I

OH

R R1

Pd(PPh3)2Cl2

+
2) DMSO, CO

[xxviii] 

* N-Arylpiperazines are typical privileged substructure in broad sense and have been used frequently in combinatorial 
synthesisxxix.  MDDR (August 2003 issue) contains 3449 physiologically active compounds containing N-arylpiperazine 
moiety, including 91 structures in clinical trials (55 – Phase I, 35 – Phase II, and 1 – Phase III), across more than 20 
therapeutic areas 

 
 



 

 
As it was discussed above, the peripheral building blocks determine pharmacokinetic and 

pharmacodynamic properties of compounds, as well as their target specificity in the case of compounds 

with unselective privileged cores.  The selection of peripheral building blocks for the design of GPCR-

targeted combinatorial libraries is based on application of Kohonen neural networks.  It is important to 

note that before this experiment, all reagent structures should be reduced to their "normalized" 

representations to allow correct comparison with the structures of retrosynthetic fragments.  For 

example, all carboxylic acid derivatives, such as acid chlorides, anhydrides or activated esters are 

transformed into their reduced radical form identical to that obtained after dissecting the amide bond; all 

alkyl halides and alcohols are transformed into alkyl radicals; etc.  Such a "normalized" database of 

building blocks has been used in all neural network experiments.  This database of available building 

blocks was processed on the same Kohonen map described in a previous section.  For illustration, we 

show the results of the selection procedure for Cannabinoid CB1/CB2 receptor ligands (Figure 10).  The 

hashed zone restricts the area of preferable peripheral fragments for Cannabinoid CB1/CB2 

agonists/antagonists.  A total of 10221 building blocks falling into the restricted area, were selected for 

synthesis planning. 

 

 

Figure 10.  Distribution of reagents within the Kohonen map. The hatched zone restricts the area of 

preferable peripheral fragments for Cannabinoid CB1/CB2 agonists/antagonists 

 

Selection of peripheral building blocks using the described method usually results in a relatively 

high number of candidates for synthesis.  To reduce their number, additional, more stringent selection 

criteria can be applied.  For instance, the structural similarity to the peripheral fragments found in the 

structures of active agents can be used.  Optimization of structural diversity is another natural way to 

restrict the size of the initial selection.  Additional filtering is related to exclude monomers that contain 

reactive chemical functions incompatible with the complementary functions of the privileged building 

 
 



 

blocks.  These algorithms and filtering procedures usually allow selection of 200-300 peripheral 

monomers for the generation of virtual combinatorial library targeted against a particular GPCR. 

At the stage of virtual target-biased combinatorial library generation, the reagents containing the 

privileged structural motifs ("privileged building blocks") are categorized according to their reactive 

chemical functionality.  Then the reagents with peripheral structural motifs ("peripheral building 

blocks") are divided into the chemical classes complementary to the corresponding privileged building 

blocks.  After such a categorization is done, the automated procedure of virtual combinatorial library 

generation can be performed.  Typically, it results in several tens of combinatorial libraries targeted 

against a particular GPCR containing a total of 104 – 106 virtual compounds. 

In addition, we have also used other computational techniques for GPCR-focused library design. 

These include Sammon mapping, SVM as well as NN modeling (for detail seexxx). These methods are 

very effective for the more detailed analysis of the initially reduced set of compounds obtained after the 

second step of our virtual screening. The following Figure shows the core results obtained in our recent 

works. The models constructed have also been used for our GPCR-focused library design. 
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(c) 
Figure 11. (a) The developed NN-model for GPCR library design (compound distributions on the scale of prediction scores 

for the test set; the data are shown for five independent randomizations)29a; (b) representative examples of highest scoring 

structures selected from the GPCR-targeted library29a; (c) graph showing accumulation of actives vs ranked for nine target-

specific series studied in29b.  The solid line is assigned to the ANN ranking procedure and the dashed line is assigned to the 

fragment similarity-based ranking procedure 

 

Conclusion 

Primary bioscreening of large exploratory libraries of small molecules produced by 

combinatorial synthesis remains a key element of modern drug discovery. The problem of enhancement 

of bioscreening effectiveness necessitates more serious attention to the quality of screening compound 

libraries.  In this context, advanced cheminformatics technologies, aiming at selection of the proper 

screening candidates, are of great industrial demand.  The further evolution of such technologies will 

result in the development of integrated cheminformatics platforms, where all the issues related to 

selection of a rational pharmaceutically relevant screening candidate, having good synthetic feasibility, a 

desirable profile of target-specific action, drug-likeness, unexploited IP position, favorable ADME/Tox 

profile, compatibility with assay protocol, etc., will be solved with maximal quality, time- and cost-

effectiveness. 

 
 



 

The computational algorithm described here is very useful in constraining the size of virtual 

libraries of potential GPCR active agents. It can be effectively applied as an in silico filter to assist in the 

product-based design and planning of novel combinatorial libraries. Commonly, the described 

methodology can be generalized to aid in the selection of an optimal methodology for any arbitrary 

target-specific library design; it is not restricted to the GPCR-targeted libraries studied here. In addition, 

the results can be used for profiling the bioactivity of compounds based on comparison with the 

structures of known agents possessing a certain biological activity. The developed approach combines 

reagent- and product-based selection procedures, and results in generation of a compact virtual 

compound library (in the general case, several thousand compounds) targeted against a particular GPCR 

target. Usually such a library consists of several tens of distinct medium-sized combinatorial sub-

libraries (50-200 compounds each) rich in target-specific structural motifs and possessing optimized 

physico-chemical properties. Such libraries represent a very useful tool at early stages of drug discovery 

and development, as a valuable source of primary hits easily amenable to further hit-to-lead 

optimization. Examples of particular GPCR-, protein kinase- and ion channel-targeted libraries 

generated using the described strategy can be found among the commercial products currently available 

at Chemical Diversity Labs, Inc. 
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Figure 12. Representative structures from GPCR-targeted library 

 

The described statistics-based method consists of a series of automated procedures, is easily 

reproducible, and can be recommended for practical design of compound libraries targeted against 

biotargets, for which sufficiently large number of selective ligands is available. It is important to note 

that all the described procedures are computationally inexpensive and permit real-time calculations with 

moderate hardware requirements. In particular, we have developed a Kohonen neural network-based 

model for in silico profiling of particular GPCR activity of small molecule drug-like compounds. It 

should be noted, that strategies for target-specific library design focused on structures of known ligands 

fail to adequately address the key issue of novelty of identification of novel active chemotypes. In 

practice, the ligand structure and property based approaches are used in combination with other 

methods, taking into account as much information as possible. For example, our NN methodology can 

be expended by selecting of similar substructures and bioisosteric analogs of known agents with specific 

action against particular GPCRs. This combined strategy is successfully applied at ChemDiv, Inc for the 

design of new generation of GPCR-targeted libraries enriched with novel lead chemotypes with 

significantly increased the hit rates. In our opinion, the increasing popularity of neural networks in 
 
 



 

rational drug design is due to two main factors: the growing availability of quality structural data on 

ligands and targets, and the expanding computational power of modern computers. Thus, we have used 

the power of unsupervised neural network learning approach in the design of highly specific compound 

libraries targeted for several therapeutically significant GPCRs. This property-based approach is 

primarily applicable for the design of target-specific libraries enriched with novel ligand chemotypes. 

Certainly, these libraries can only be validated in primary screening. 

The developed GPCR-related libraries are updated quarterly based on a “cache” principle. Older 

scaffolds/compounds are replaced by templates resulting from our in-house development (unique 

chemistry, literature data, computational approaches) while the overall size of the library remains the 

same (ca. 37K compounds). As a result, the libraries are renewed each year, proprietary compounds 

comprising 50-75% of the entire set. Clients are invited to participate in the template selection process 

prior to launch of our synthetic effort. Representative compounds from our GPCR-targeted library (a 

total of 37,032 compounds) are shown in Figure 12. 
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