Burger line Burger line Burger line
Logo Logo Logo
Burger line Burger line Burger line
Sign in
Sign in

Ion Channels library 1677

Preferred format:
Desirable size of the custom library selection:
  • Mg
  • uMol
Our library presents a unique collection of small molecule compounds carefully selected for targeting ion channel protein targets, which are critical components in various therapeutic areas. This collection encompasses an impressive range of 57 ion channels, further broken down into 119 protein sub-families/units, making it highly relevant for a multitude of research applications.

The library contents are backed by recent publication references, with data compiled from more than 500 research papers and patents published since 2014, ensuring that all compounds in the library are at the forefront of current scientific knowledge. Moreover, it incorporates the most recent structural data dated 2019 and 2020, including X-Ray and Cryo-EM structures from the Protein Data Bank, providing valuable insights into the molecular architecture of these targets. As a comprehensive Ion Channels Platform Library, it totally boasts more than 26 thousand compounds, offering a rich resource for researchers and pharmaceutical companies in the pursuit of discovering and developing new ion channels targeting therapeutics. This library not only aids in the advancement of drug discovery but also contributes to a deeper understanding of ion channel functions and their roles in various diseases.

Ion channels are pore-forming proteins that facilitate the flow of ions across cellular membranes. Physiologically, ion channels are regulated by various mechanisms:

Voltage: Most Na, K, Ca, and some Cl channels belong to the 'voltage-gated ion channels,' activated by changes in the cell's electrical potential.

Intracellular and/or extracellular mediators: Some K and Cl channels, transient receptor potential (TRP) channels, GABA(A) receptors, and P2X receptors are 'ligand-gated ion channels,' activated by binding specific molecules.

Ion channels are widely recognized as crucial therapeutic targets for diseases affecting:

● The central nervous system (CNS), such as sleep disorders, anxiety, epilepsy, and neuropathic pain.

● The peripheral nervous system, when the ion channel-targeted drugs are used as anticonvulsant, analgesic, and anti-inflammatory treatments.

● The cardiovascular system, including conditions like coronary heart disease, hypoxic conditions, and stroke.

As gatekeepers of cellular ionic homeostasis, ion channels regulate critical functions in both excitable and non-excitable cells, impacting everything from neuronal signaling and muscle contraction to hormone secretion and immune responses. This makes them key targets for therapeutic intervention in diverse medical fields, including neurology, cardiology, and pain management. The modulation of ion channel activity can rectify aberrant signaling pathways, offering therapeutic solutions for conditions like epilepsy, cardiac arrhythmias, chronic pain, and mood disorders. Furthermore, the specificity and diversity of ion channels, combined with advances in understanding their structural and functional dynamics, have opened up new opportunities for targeted drug design. As a result, ion channels remain a highly attractive and dynamic area in drug discovery, with ongoing research continually revealing novel aspects of their potential as therapeutic targets.
0
Cart Subtotal:
Go to cart
You will be able to Pay Online or Request a Quote