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Protein kinases 

Protein kinases (PKs) are important mediators of normal cellular signal transduction. By adding 

phosphate groups to substrate proteins, they direct the activity, localization and overall function of many 

proteins, and serve to orchestrate the activity of almost all cellular processes. Protein kinases play a key role 

in virtually all physiological processes including proliferation, angiogenesis, migration, cell cycle, etc. The 

diversity of essential functions mediated by kinases is shown by the conservation of more than 50 distinct 

kinase families between yeast, invertebrate and mammalian kinomes. Of the 518 human protein kinases, 478 

belong to a single superfamily whose catalytic domains are related in sequence. It is now recognized that 

abnormal phosphorylation of proteins mediated by kinases may result in diseases including cancer, diabetes, 

rheumatoid arthritis and hypertension, arteriosclerosis, psoriasis, and a large number of inflammatory 

responses [1]. The development of specific PK inhibitors as pharmacological tools and potential 

antiproliferative agents is an active and highly competitive area of research. The phylogenetic trees of the PK 

families, subfamilies and groups can be identified from the several databases [2]. Despite extensive efforts of 

pharmaceutical companies and academic groups, there are only a few small molecule inhibitors of protein 

kinases widely available as drugs. The reason for the scarcity of PK-targeted drugs is the stringent criteria 

required for a therapeutically useful small molecule inhibitor of these enzymes. Inhibitors need to be highly 

potent, selective among the closely related enzymes, and also possess adequate pharmacodynamic properties 

for the target of interest. 

Protein kinases can be clustered into several distinct groups, families and sub-families, of increasing 

sequence similarity and biochemical function. The kinase dendrogram (Fig. 1) [3] shows the sequence 

similarity between these catalytic domains: the distance along the branches between two kinases is 

proportional to the divergence between their sequences. Seven major groups are labeled and colored 

distinctly. For instance, the tyrosine kinases (TKs) form a distinct group, whose members phosphorylate 

proteins on tyrosine residues, whereas enzymes in all other groups phosphorylate primarily serine and 

threonine residues. 

Protein kinase inhibitors represent an important and still emerging class of targeted therapeutic agents. 

Drug discovery and development strategies have explored numerous approaches to target the inhibition of 

protein kinase signaling. 
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Fig. 1. The protein kinase dendrogram. Description: TK Tyrosine kinase; AGC Containing PKA, PKG, PKC families; CAMK 

Calcium/calmodulin-dependent protein kinase; CK1 Casein kinase 1; CMGC Containing CDK, MAPK, GSK3, CLK families; 

STE Homologs of yeast Sterile 7, Sterile 11, Sterile 20 kinases; TKL Tyrosine kinase-like 

 

Tyrosine kinase family 

Among the PTs discovered to date tyrosine kinases seem to be the most attractive biological targets 

for cancer therapy, as quite often their abnormal signaling has been linked with tumor development and 

growth [4]. In addition, they play a critical role in other diseases, for example in inflammation [5] and 

rheumatoid arthritis [6]. 

Tyrosine kinases are known as key switches in many cellular signal transduction pathways and 

catalyze transfer of ATP γ-phosphate onto a protein substrate. Although tyrosine kinases vary in size, 

mechanism of activation, subunit composition, and subcellular localization, they all share a structurally 
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conserved ATP binding catalytic core [7], the main binding site for most of TK inhibitors. The conserved 

nature of this binding site represents a challenge for the selection of inhibitors. Most of TK ligands share 

specific steric, lipophilic, H-binding, and other parameters. The combination of these physico-chemical 

properties constitutes the basis for a statistical model discriminating between TK ligands and non-TK-active 

agents. 

A large sub-family of TKs includes many groups which can be divided in two major classes in 

accordance to their localization and specificity: receptor tyrosine kinases and non-receptor (cytoplasmatic) 

tyrosine kinases (Fig. 2a,b). 

 

                                               (a)                                                                           (b) 
Fig. 2. (a) tyrosine kinase dendrogram; (b) histogram which displays the genetic and morphological similarity within the TK-

family enzymes 

 

For example, three tyrosine kinase families, the Src, Tec and Syk kinase families are intimately 

involved in TLR signalling, the critical first step in cellular recognition of invading pathogens and tissue 

damage. Their activity results in changes in gene expression in affected cells. Key amongst these genes are 

the cytokines, which orchestrate both the duration and extent of inflammation. Tyrosine kinases also play 

important roles in cytokine function, and are implicated in signalling through both pro- and anti-

inflammatory cytokines such as TNF, IL-6 and IL-10. 

Among various groups of TKs, abl-kinase and grow-factor receptor tyrosine kinases, especially 

FGFR, EGFR, VGFR and IGF1R kinases, are the most promising targets particularly implicated in cancer 

grow and progression. Thus, constitutive activated TKs stimulate multiple signaling pathways responsible for 

DNA repair, apoptosis, and cell proliferation. During the last few years, thorough analysis of the mechanism 

underlying tyrosine kinase's activity led to novel cancer therapy using TKs blockers. These drugs are 
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remarkably effective in the treatment of various human tumors including head and neck, gastric, prostate and 

breast cancer and leukemias. The most successful example of kinase blockers is Imatinib (Imatinib mesylate, 

Gleevec, STI571), the inhibitor of bcr/abl oncoprotein, which has become a first-line therapy for chronic 

myelogenous leukemia. The introduction of STI571 for the treatment of leukemia in clinical oncology has 

had a dramatic impact on how this disease is currently managed. Others kinase inhibitors used recently in 

cancer therapy include Dasatinib (BMS-354825) specific for abl non-receptor cytoplasmic kinase, Gefitinib 

(Iressa), Erlotinib (OSI-774, Tarceva) and Sunitinib (SU 11248, Sutent) specific for VEGF receptor kinase, 

AMN107 (Nilotinib) and INNO-406 (NS-187) specific for c-KIT kinase. The following TK blockers for 

treatment of various human tumors are in clinical development: Lapatinib (Lapatinib ditosylate, Tykerb, 

GW-572016), Canertinib (CI-1033), Zactima (ZD6474), Vatalanib (PTK787/ZK 222584), Sorafenib (Bay 

43-9006, Nexavar), and Leflunomide (SU101, Arava). In accordance with the examples just above, efficient 

tools are needed for the high-throughput search for novel candidates to be assayed as TK-targeted drugs. The 

key to harnessing the high therapeutic potential of TKs is in the design of high-quality small molecule 

libraries targeted against these proteins. 

 

Concept and Applications 

TK-targeted library design at CDL involves: 

• A combined profiling methodology that provides a consensus score and decision based on various 

advanced computational tools: 

1. Unique bioisosteric morphing and funneling procedures in designing novel potential TK ligands with high 

IP value. We apply CDL’s proprietary ChemosoftTM software and commercially available solutions from 

Accelrys, MOE, Daylight and other platforms. 

2. Neural Network tools for target-library profiling, in particular Self-organizing Kohonen maps, performed 

in SmartMining Software. We have also used the Sammon mapping and Support vector machine (SVM) 

methodology as more accurate computational tools to create our TK-focused library. 

3. A molecular docking approach to focused library design. 

4. Computational-based `in silico` ADME/Tox assessment for novel compounds includes prediction of 

human CYP P450-mediated metabolism and toxicity as well as many pharmacokinetic parameters, such as 

Brain-Blood Barrier (BBB) permeability, Human Intestinal Absorption (HIA), Plasma Protein binding 

(PPB), Plasma half-life time (T1/2), Volume of distribution in human plasma (Vd), etc. 

The fundamentals for these applications are described in a series of our recent articles on the design of 

exploratory small molecule chemistry for bioscreening [for related data visit ChemDiv. Inc. online source: 

www.chemdiv.com]. Our multi-step in silico approach to TK-focused library design is schematically 

illustrated in Fig. 3. 
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Fig. 3. Multi-step computational approach to TK-targeted libraries design 

 

This common approach was effectively applied for the developing of our TK-focused, in particular 

for abl, VGFRs, Src, YES, ErbB, Met and IGF1R kinases. 

 

• Synthesis, biological evaluation and SAR study for the selected structures: 

1. High-throughput synthesis with multiple parallel library validation. Synthetic protocols, building blocks 

and chemical strategies are available. 

2. Library activity validation via bioscreening; SAR is implemented in the next library generation. 

 

Virtual screening on TK-specific activity 

The common TK-filter 

At the initial stage of our TK-targeted library design, we have collected a 22,110-compound database 

of known drugs and compounds entered into preclinical or clinical trials; their structures and assignments 

were obtained from Prous Science Integrity [8]. Each compound in this database is characterized by a defined 

profile of target-specific activity, focused against 1 of more than 100 different protein targets. The database 

was filtered based on MW (not more than 800). Molecular features encoding the relevant physicochemical 

and topological properties of compounds were calculated from 2D molecular representations and selected by 

PCA (Step 1, Fig. 3). These molecular descriptors encode the most significant molecular features, such as 

molecular size, lipophilicity, H-binding capacity, flexibility, and molecular topology. Taken in combination, 

they define both pharmacokinetic and pharmacodynamic behavior of compounds and are effective for 

property-based classification of target-specific groups of active agents. However, it should be noted that for 

each particular target-specific activity group, another, more optimal set of descriptors can be found, which 

provides better classification ability. As shown in Fig. 3, ‘front-line’ computational tools include Kohonen-

based SOM generation as well as Neural-Net- and SVM-based modeling; these algorithms have been 

effectively used across the Step 2, decoded in Fig. 3. 

 

Self-organizing Kohonen mapping 
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A Kohonen SOM of 22,110 pharmaceutical leads and drugs generated as a result of the unsupervised 

learning procedure is depicted in Fig. 4. It shows that the studied compounds occupy a wide area on the map, 

which can be characterized as the area of druglikeness. Distribution of various target-specific groups of 

ligands in the Kohonen map demonstrates that most of these groups have distinct locations in specific 

regions of the map (Fig. 5a-e). A possible explanation of these differences is in that, as a rule, receptors of 

one type share a structurally conserved ligand-binding site. The structure of this site determines molecular 

properties that a receptor-selective ligand should possess to properly bind the site. These properties include 

specific spatial, lipophilic, and H-binding parameters, as well as other features influencing the 

pharmacodynamic characteristics. Therefore, every group of active ligand molecules can be characterized by 

a unique combination of physicochemical parameters differentiating it from other target-specific groups of 

ligands. Another explanation of the observed phenomenon can be related to different pharmacokinetic 

requirements to drugs acting on different biotargets. 

 
Fig. 4. Property space of 22,110 pharmaceutical leads and drugs visualized using the 

Kohonen map (the data have been smoothed) 
 

The described algorithm represents an effective procedure for selection of target-focused compound 

subsets compatible with high throughput in silico evaluation of large virtual chemical space. Whenever a 

large enough set of active ligands is available for a particular receptor, the quantitative discrimination 

function can be generated allowing selection of a series of compounds to be assayed against the target. It is 

important to note that focusing on physicochemical rather than structural features makes this approach 

complementary to any available ligand structure similarity technique. 

 
                  (a)                                    (b)                                   (c)                                     (d)                                    (e) 
Fig. 5. Distribution of 5 large target-specific groups of pharmaceutical agents on the Kohonen map: (a) tyrosine kinase inhibitors 

(1423 compounds); (b) nuclear receptor agonists/antagonists (1122 compounds); (c) GPCR agonists/antagonists (12,711 

compounds); (d) potassium channel activators (1143 compounds); (e) calcium channel antagonists (1321 compounds) 
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The predictive ability of the model constructed towards TK-active agents was approx. 77%. Therefore, 

this model can be satisfactorily used for targeted-library design and rational compound selection. 

  

Neural-Net modeling 

Using the same knowledgebase we have further developed a property-based neural network (NN) 

algorithm for effective discrimination between TK inhibitors and compounds belonging to non-kinase 

activity classes. Following our strategy, 1423 known TK ligands belonging to different TK classes were used 

as a positive training set, TK(+). A subset of over 8592 compounds, representing over 200 various non-

kinase based active ligands was used as a negative training set, TK(-). Using a special feature selection 

procedure, a 19-descriptor set was chosen for NN experiments. These descriptors encode significant 

molecular properties, such as lipophilicity, charge distribution, topological features, steric and surface 

parameters. The back-propagated feed-forward nets were constructed and trained with the molecular 

descriptors as input values and activity scores as output values. To assess the predictive ability of the NN 

models generated, we used three independent randomizations within the reference dataset which included 

tree groups of compounds (training, cross-validation and test group). The resulting histogram is shown in 

Fig. 6. 

 
Fig. 6.  Distribution of TK-active and TK-inactive compounds from the test set. An average predictive accuracy was 76% 

 

The classification quality was approximately the same in each of these three independent cycles: up to 

82% of TK ligands and 70% of non-TK ligands were correctly classified in the corresponding test sets. We 

carried out a wet lab experimental validation of the developed model via highthroughput screening of 5,000 

compounds from the CDL corporate compound database against abl-kinase (see below). The experimental 

activity data (hit rate) was consistent with the expected from NN calculations, which demonstrates a high 

utility of NNs in designing TK-specific combinatorial libraries. The model demonstrated an enhanced level 

of discrimination between “active” and “inactive” libraries. 

 

SVM-based modeling 
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Recently, a so-called Support Vector Machines (SVM) [9] method has became popular as an 

alternative method. At least as powerful and versatile as ANNs, SVM approach is being adjusted for various 

application, from genomics to face recognition, including drug design [10]. Recently, we tested SVM as a 

classification tool in several drug-discovery programs and found it typically outperforming other approaches, 

in particular, ANNs [11]. Here, we used SVM algorithm for selection of compounds for primary and 

secondary screening against TKs. 

The main parameters of the SVM-based classification model are similar to that used in NN-modeling 

(see above). Thus, as a training set, we used 1423 known TK ligands from different classes (positive training 

set, TK(+)), and a set of over 8592 compounds, representing over 200 various non-kinase active ligands 

(negative training set, TK(-)). All molecules were additionally filtered for molecular weight range (200–600) 

and atom type content (only C, N, O, H, S, P, F, Cl, Br, and I were permitted). 

For the entire database of TK-active and TK-inactive structures, we have calculated sixty five 

molecular descriptors encoding such molecular properties as lipophilicity, charge distribution, topological 

features, steric and surface parameters, using ChemoSoft™. Low-variability and highly correlated (R > 0.9) 

descriptors were removed reducing the set to 39. A sensitivity analysis [12] was applied to further reduce the 

number of the redundant descriptors. The resulted 8 molecular descriptors (logP, no. of H-bond acceptors, 

no. of H-bond donors, no. of rotatable bonds, molecular refractivity, density, Zagreb index, relative positive 

surface area), were used for generation of the SVM classification model [13]. Before modeling each 

descriptor was scaled to [0;1] range (by training set; scaled values for other subsets were derived using train 

set scaling factors). SVM classifiers were based on linear or nonlinear (Radial Basis Functions, RBF) kernel. 

In our experiments, the nonlinear RBF kernel provided the best classification ability. The goodness of the 

model has been evaluated using an internal validation procedure. The whole set of all 10015 compounds was 

divided into three parts: training set (for building the SVM model), validation set (for checking model quality 

while generating SVM models; this set was used to check SVM models instead of leave-one-out 

crossvalidation, as the latter is too slow for large data sets), and the test set (for checking prediction quality of 

the best models). The resulting figure 7 illustrates the distributions of calculated SVM scores for compounds 

in TK(+) and TK(-) test sets, correspondingly. In order to assess the classification quality of the trained SVM 

model, we calculated percent of correctly classified compounds in each set at different threshold scores. With 

the threshold score 0.4, the model correctly classified up to 70% of TK(+) and 80% of TK(-) compounds). 

Further, we have also validated our model by calculating the SVM scores for the set of several known abl-

kinase inhibitors, present neither in the training nor in the cross-validation set. It is seen, that our model 

correctly assigned all these active agents to the category of potential tyrosine kinase actives, as the predicted 

scores were in the range of 0.4-0.9. 
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Fig. 7. SVM score distribution of the test set compounds. An average predictive accuracy was 75% 

 

 After the models were developed and successfully validated we have further classified the structures 

from our virtual library through this common in silico filter. Thus, based on the outputs outputted from these 

models we have calculated a consensus score for each compound tested. As a result, a large set of high-score 

structures (5,000 compounds) was collected and further evaluated using specific computational models (Step 

3, see below). 

 

Specific in silico filters 

 The set of the compounds selected were further expanded and tested using specific computational 

approaches including bioisosteric morphing, molecular docking, Sammon mapping, etc. The concept of 

bioisosterism is central in drug design and development [14]. The term refers to the compounds or 

substructures that share similar shapes, volumes, electronic distributions and physicochemical properties and 

have similar biological activity [15]. Bioisosteric approach is useful for morphing the marginal chemotypes. 

Thus, bioisosteric transformations within TK-group are illustrated in Fig. 8, in which a 4-anilinoquinazoline 

scaffold representing a core fragment of many potent inhibitors of the receptor tyrosine kinases, is used as an 

input structure. 

It should be particularly noted that following the original concept of diversity-oriented compound 

library design we have effectively applied three computational methods (see above) which were based solely 

on physicochemical descriptors, and so they provide various structures of high diversity. In turn, bioisosteric 

morphing generally operates within the defined and relatively narrow scope of the core/template structure of 

active compound. Thus, the final set included two main groups: structures which were obtained at the output 

of front-line filters (5,000 compounds) as well as structures generated by bioisosteric transformations within 

TK-active compounds. These groups were combined and gave 10,000 unique structures which were further 

evaluated. 
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Fig. 8. Two-step procedure for generation and search of bioisosterically transformed analogs of a 4-anilinoquinazoline scaffold 

(the transformed fragments are highlighted in bold). The bioisosteric morphing of active compounds was carried out with the use 

of the Bioisoster module of the ChemoSoftTM software. 

 

Abl kinase-targeted library 

 In recent work, we have developed a hands-on methodology for selection of initial library for 

screening against abl kinase, a therapeutically significant enzyme from TK family, and optimization of active 

compounds [16]. For example, Abl kinase was found to be the key regulator of chronic myeloid leukemia 

(CML) grow and progression. Gleevec, highly potent bcr-abl TK inhibitor, seems to be the most successful 

effort to date for treatment of CML. It is believed that binding of Gleevec prevents phosphorylation of 

Tyr393 residue in the active site, thus inactivating the enzyme with IC50 of 38 nM. It is further noted that 

Gleevec is a potent inhibitor of two additional kinases, namely c-kit and PDGFR (both in α and β isoforms). 

The structure of Gleevec and several reported bcr/abl kinase inhibitors are shown in Figure 9. 

  
Fig. 9. Structures of representative abl kinase inhibitors 

 

As we communicated in [17], a unique in silico classification model which was based on the 

differential properties of known TK inhibitors and therapeutic molecules active against other targets was 

developed and successfully applied for abl kinase-targeted library design. This model was primarily based on 

SVM classifier described above and on a computational strategy for bioisosteric morphing. We also used the 

later approach to design a second-generation series against the Abl tyrosine kinase. This series featured lower 
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overall toxicity and improved IP potential compared to the initial hits outputted from our biological 

screening. Some of the primary hits with a low IP potential (Fig. 10) or that contain an undesired N-

aroylhydrazone group (Fig. 11a,b) are shown. In all cases, novel bioisosteric analogs were generated around 

the initial scaffolds. As a result, the overall confirmed hit rate of the secondary focused libraries was 5-10%, 

substantially higher than the primary hit rate (0.5%). 

 
Fig. 10. Bioisosteric transformations of the primary pyrazolopyrimidine scaffold and novel active chemotypes. The queried 

substructure within the initial hit is shown in bold 

 

 

                                      (a)                                                                                   (b) 
Fig. 11. Bioisosteric transformations of the primary 3-(N-aroylhydrazone)indol-2-one scaffold and novel active chemotypes. The 

queried substructure within the initial hit is shown in bold 

 

Following the methodology applied, an initial round of our virtual screening against abl kinase was 

accomplished for a set of 100,000 compounds selected from our collection at Chemical Diversity Labs. 

Based on the structure of known abl inhibitors (see Fig. 9) and using a data mining algorithm which 

discriminates compounds according to their kinase inhibitory potential (SVM-classifier), we yielded 12,000 

high-score compounds. They were further scored against the kinase using target-based approaches (see 

below) giving us a set of 550 ‘hit’ compounds for biological testing. In addition, a subset of 10,000 

compounds was randomly selected from the same initial database of 100,000. As shown in figures 9 and 10, 

biological trials have revealed several highly potent hits which were reasonably regarded as potential lead-

compounds. 

 

Molecular docking and pharmacophore-constrained screening 
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High-resolution structural information is available for numerous kinase targets. These data are 

invaluable for discovery of ligands with both diverse chemotypes and binding modes. Protein kinase 

inhibitors typically bind at the highly conserved nucleotide-binding pocket of the catalytic domain. Specific 

protein kinase inhibitors take advantage of limited sequence variation surrounding the ATP-binding site, as 

well as conformational differences between inactive and active forms of kinases. We have used a guided 

pharmacophore-constrained structure-based screening strategy for our focused-library design. Thus, the 

crystal structure of the abl kinase/PD-173955 complex was used for docking study and pharmacophore 

modeling (Fig. 12a). Crystallographic waters were removed and bound ligand was used to define the active 

site. We also assumed that no significant induced fit effects occur upon the binding and the receptor is rigid 

to a good approximation. Initially, we generated an active site map for abl tyrosine kinase. We subsequently 

produced the respective 3D pharmacophore space available to conduct virtual screening and to prioritize 

compounds (Fig. 12b,c). Using sets of overlapping spheres derived from the protein-ligand complex 

crystallographic data, the active site of a receptor can be modeled. Sphere centers were used to define atom 

positions of a potential ligand as well as excluded volumes. Our XCGen program generated 3D molecular 

conformations using standard stereochemical rules and molecular mechanics refinements. Generated 

conformers were used as starting points for iterative modification of molecular geometry to obtain better fit 

for a previously generated 3D pharmacophore. Results of this analysis were prioritized and 550 compounds 

with the best fit were selected for further biological screening. Notably, the program did not find a 

pharmacophore fit solution for more than 10,000 compounds. Very likely, these compounds are unable to 

bind to the active site of abl enzyme. 

   

                          (a)                                             (b)                                                       (c) 
Fig. 12. (a) PD-173955 in the active site of abl kinase (this data was used for docking evaluation); pharmacophore models 

constructed based on two known abl kinase inhibitors: (b) Glivec and (c) ST571 

 

In addition, we have also used other computational techniques for abl kinase-focused library design. 

These include Sammon mapping and NN modeling. These methods are very effective for the more detailed 

analysis of the initially reduced set of compounds obtained after the second step of our virtual screening. 

Representative compounds from our abl kinase-targeted sublibrary are shown in Fig. 13. 
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Fig. 13. Representative structures from abl kinase-targeted sublibrary 

 

VEGF-targeted library 

Vascular endothelial growth factors (VEGFs) and a respective family of tyrosine kinases receptors 

(VEGFRs) are key proteins modulating angiogenesis, the formation of new vasculature from an existing 

vascular network. There has been a considerable in vivo evidence, including clinical observations, that 

abnormal angiogenesis is implicated in a number of malignancies, which include rheumatoid arthritis, 

inflammation, cancer, psoriasis, degenerative eye conditions and others. Anti-angiogenic therapies based on 

inhibition of VEGF/VEGFR signaling were reported to be powerful clinical strategies in oncology and 

ophthalmology [18]. Current efforts have yielded promising clinical data for several anti-angiogenic 

therapeutics. In total, there are 4 launched drugs and more than 30 agents in development that were reported 

to antagonize this pathway. Fierce competition further highlights the level of interest in pharmaceutical 

industry to development of VEGF/VEGFR-targeting drugs. There are two main groups of such drugs, 

namely drugs based on biological macromolecules and small-molecule inhibitors [19]. Despite the promising 

clinical data obtained for therapies based on biologics, high manufacturing cost and in some instances, rapid 

metabolic degradation limit their clinical potential. In addition, complex structure of biological 

macromolecules poses challenges to their optimization. To overcome these difficulties, extensive studies of 

small-molecule VEGFR inhibitors have been performed in the past decade; their structures are disclosed 

within figure 14. As a result, two drugs were launched and a series of advanced clinical candidates are under 

development (Table 1). Binding of VEGFs to their receptors followed by formation of VEGFR homo- and 

heterodimers induces tyrosine kinase activity of VEGFR. This leads to autophosphorylation of an 

intracellular tyrosine residues and initiates signaling. All small-molecule agents reported to-date target VEGF 

signaling by inhibiting VEGFR receptor tyrosine kinase (RTKs) activity. opposed to biological therapies 

homed at the extracellular region of the receptors, all advanced synthetic molecules target intracellular ATP-

binding pocket of the VEGFRs [20]. Due to the structural conservation of the ATP-binding pockets in protein 

kinases, these agents display high affinity for the additional members of kinome including PDGFR, Raf-

kinase, ErbB family of receptors and other targets [21]. This “dual” inhibitor profile offers an intriguing 

possibility for disruption of several independent biological pathways vital for tumor proliferation and 

metastasis in the clinical setting [22]. Although in general, small molecules lack potency and specificity 

associated with biologics, ultimately, they may prove to be the modality of choice in achieving good balance 

between therapeutic window, tumor resistance, PK profile and manufacturing costs. To further illustrate the 

Kosterina_AA
Stamp

Kosterina_AA
Stamp



point, several reports commented on insufficient efficacy displayed by a mono-therapies that block single 

angiogenic pathway [23]. 
 

Table 1. Marketed and late clinical development small-molecule inhibitors of VEGF signaling.* 

Drug name Originator 

Highest 

development 

phase 

Diseases Cellular target 

Sorafenib Bayer Launched-2005 

Brain, breast, colorectal, lung, 

endocrine, ovarian, liver, female 

reproductive system cancers 

Flt3, C-KIT, PDGFR, Raf 

kinase, VEGFR-2/3 

Sunitinib Pfizer, Sugen 
Launched - 

2006 

Breast, colorectal, endocrine, gastric, 

liver, non-small cell lung, prostate and 

renal cancers, myeloid leukemia 

c-FMS, Flt3, C-KIT, PDGF, 

VEGFR-1/2/3 

Vatalanib Novartis Phase III 

Breast, colorectal, pancreatic, lung, 

prostate cancers, glioblastoma, Kaposi's 

sarcoma, multiple myeloma, myeloid 

leukemia, solid tumors 

C-KIT, PDGF, VEGFR-

1/2/3 

Vandetanib AstraZeneca Phase III 
Brain, breast, endocrine cancers, 

NSCLC, solid tumors 

EGFR, FGFR, RET, 

VEGFR-1/2/3 

AZD-2171 AstraZeneca Phase II/III Colorectal cancer and NSCLC VEGFR-1/2/3 

SU-6668 Sugen Phase II Breast and liver cancers, solid tumors FGFR, PDGFR, VEGFR-2 

CP-547632 OSI, Pfizer Phase II NSCLC and ovarian cancer EGFR, PDGFR, VEGFR-2 

Pazopanib 
GlaxoSmithKli

ne 
Phase II 

Psoriasis, multiple myeloma, ovarian 

and renal cancers, sarcoma 
VEGFR-2 

AMG-706 Amgen Phase II Gastrointestinal cancer and NSCLC PDGFR, VEGFR-1/2/3 

AEE-788 Novartis Phase I/II Glioblastoma EGFR, HER2, VEGFR-2 

E-7080 Eisai Phase I Solid tumors VEGFR-2 

CHIR-258 Chiron Phase I 
Multiple myeloma, myeloid leukemia 

and solid tumors 

FGFR3, PDGFR, VEGFR-

1/2 

OSI-930 OSI Phase I Tumors C-KIT, PDGFR, VEGFR-2 

BAY-

579352 
Bayer Phase I Tumors PDGFR, VEGFR-2 

ABT-869 Abbott Phase I Tumors 
CSF1R, ERK, Flt3, 

PDGFR, VEGFR-2 

BMS-

582664 

Bristol-Myers 

Squibb 
Phase I Digestive/gastrointestinal cancer FGFR1, VEGFR-2 

KRN-951 Kirin Brewery Phase I Tumors and AMD VEGFR-2 

*data as of June 2006. 

Kosterina_AA
Stamp

Kosterina_AA
Stamp



CH3

CH3

FO

Br

O

N

N

N

NH

         1
(Vandetanib)

CH3

FO

O N

N

O

N

N
H

CH3

         2
(AZD-2171)

CH3

CH3

CH3

O

O

O

N

Cl

N
H

O

N
H

O N

       3
(KRN-951)

CH3

O

N
H

O

N
H

O

NH2

ClO

N      4
(E-7080) 

Cl

N

NH

N

N

       5
(Vatalanib)

CH3

N
H

O

Cl

O

N

O

NH

N

N

          6
(BAY-579352)

 

N
H

O
F

N
H

CH3

CH3

N
H

O
N

CH3
CH3

     7
(Sunitinib)

     8
(SU-6668)

CH3

CH3

OH
O

O
N
H

N
H

 

CH3

NH
F

F F

Cl O
O

O
N

N
H

N
H

      9
(Sorafenib)

NH2

F

F

Br

N
H

O

O
N O

S N

N
H

        10
(CP-547632)

N
H

NH
NNH2

N
H O

FCH3

      11
(ABT-869)

N

N
H

O

N
H

CH3 CH3

NH

N

       12
(AMG-706)  S

NH

O

N
H

NH
F

F
F

N

       13
(OSI-930)

CH3N NN

N

N
H

O

NH2F

      14
(CHIR-258)

CH3CH3

NH

N

N

N

N

N

      15
(AEE-788)

O

N
H

CH3

N

N
N

O

O
O

CH3

O

NH2

CH3CH3

         16
(BMS-582664)

N

NN
H

S
O

O

NH2

CH3

N
CH3

N
N

CH3

CH3

       17
(Pazopanib)  

Fig. 14. Potent small-molecule inhibitors of VEGFRs currently evaluated in advanced biological trials 

 

Using the methodology described above for abl kinase we have designed a unique VEGFR-targeted 

sublibrary based on the data collected. This data includes the structures of the whole class of TK inhibitors 

and especially VEGFR-active agents obtained from Prous Science Integrity database. Thus, we have 
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successfully applied in silico approaches assigned to Step 2 and Step 3 (see Fig. 3) to produce this focused 

sublibrary (see Fig. 15 for representative examples). 
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Fig. 15. Representative structures from VEGFR-targeted sublibrary 

 

Finally, we have used the same in silico strategy to develop additional TK-focused libraries including 

Src, YES, ErbB, Met and IGF1R kinase-targeted sets. The representative examples of high-score structures 

entered in these libraries are shown within the figure below. As a result, we have selected a set of 15,000 

structures which can be reasonably regarded as potential Tyrosine Kinase inhibitors (see Fig. 16). 
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Fig. 16. Representative structures from the common TK-targeted library 

 

In summary, we have developed and effectively applied a multi-step computational approach to 

design of our TK-targeted library. In particular, we have successfully validated this strategy towards abl 

kinase and VEGFRs. The related biological trials have revealed several highly potent inhibitors, and we can 

confidently conclude that described in silico pathway represents an effective method for TK-targeted 

libraries design. Moreover, we provide rapid and efficient tools for follow-up chemistry on discovered hits, 

including single isomer chemistry, stereoselective synthesis and racemic mixture separation. The developed 
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libraries are updated quarterly based on a “cache” principle. Older scaffolds/compounds are replaced by 

templates resulting from our in-house development (unique chemistry, literature data, computational 

approaches) while the overall size of the library remains the same (ca. 15-26K compounds). As a result, the 

libraries are renewed each year, proprietary compounds comprising 50-75% of the entire set. Clients are 

invited to participate in the template selection process prior to launch of our synthetic effort. 
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