Burger line Burger line Burger line
Logo Logo Logo
Burger line Burger line Burger line
Sign in
Sign in

CNS targets activity set

Preferred format:
Desirable size of the custom library selection:
  • Mg
  • uMol

It is patently obvious that CNS activity (and trans-cellular permeability in general) is a complex function of physical/chemical properties of molecules such as size, lipophilicity, hydrogen-bonding potential, charge, and conformation. For any given molecule, one of these factors may dominate others. Drugs with the brain as the site of action should, in general, be able to cross the BBB. Drug delivery to the brain can be enhanced by increasing the lipophilicity of the molecule, by using prodrugs that dissociate after crossing the BBB, or by using passive or active drug targeting that utilizes transport systems at the BBB in the normal or disease states. In general, the trans-endothelial transport of compounds can depend on binding to constituents of the plasma, ionization state, time-dependent plasma concentration, and cerebral flow. It is possible to modify many of these properties with changes in chemical structure.

Previous attempts at understanding CNS activity have resulted in certain rules-of-thumb. For example, Andrews et al. have shown that an aromatic ring-tertiary nitrogen pharmacophore is important for CNS activity. Levin has successfully correlated octanol/water partition coefficient (LogP) and brain capillary permeability for compounds with molecular weight less than 400. However other, more recent attempts conclude that the octanol/water partition coefficient does not correlate well with blood-brain transport. Other criteria, like a limit of 8-10 hydrogen bonding groups per molecule, have also been proposed.

0
Cart Subtotal:
Go to cart
You will be able to Pay Online or Request a Quote

We use "cookies*  to ensure the functionality of our website, recognise your browser or device, learn more about your interests, and provide you with essential features and services and for additional purposes, including:

Recognising you when you sign-in to use our services. This allows us to provide you with product recommendations, display personalised content, and provide other customised features and services.
Keeping track of your specified preferences. You may set your preferences through Your Account..
Keeping track of items stored in your shopping basket and personal cabinet.
Conducting research and diagnostics to improve ChemDiv’s content, products, and services.
Delivering content, including ads, relevant to your interests on ChemDiv’s site
Reporting. This allows us to measure and analyse the performance of our services.

By  cookies you give consent to the processing of your personal data, including transfer to third parties. Further information can be found in our privacy policy.

Accept all cookies