Bromodomain Modulators Library
Bromodomains (BRDs) are evolutionary conserved protein interaction modules that specifically recognize ε-N-lysine (KAc) acetylation motifs, a key event in thereading process of epigenetic marks. These domains have been observed as part of numerous larger protein architectures, many of which are involved in regulating gene transcription, including HATs, ATP-dependent chromatin-remodeling complexes, methyltransferases, and transcriptional coactivators.
The large number of diseases that have been linked to BRD-containing proteins and the success of particular HDAC inhibitors indicate that BRD inhibitors will find a large number of applications in drug discovery and academic research. The relatively weak interaction of BRDs with their substrates, the diversity and physicochemical properties of the acetyl lysine binding site, and the large number of available crystal structures will facilitate the rational design of such inhibitors.
ChemDiv proposes the new library of BRDs inhibitors/modulators. This library represents a selection of drug-like compounds aimed at modulating protein-protein interaction of bromodomain containing proteins with different proteins involved in significant physiological processes. Library has been assembled using in house structural biology insight, molecular stimulation-modeling, virtual screening of ChemDiv’s novel chemistries and medicinal chemistry filtering/ranking of the resulting hits. Evaluation of the rich body of structural information on bromodomains enabled detailed family-wide structural analysis of the human BRD family and its “druggability”. ChemDiv combined a number of in silico screening approaches and spatial information of putative acetyl-lysine mimetics to identify chemical starting points for the development of BRDs inhibitor library.