Chemokine Receptor-Targeted Library
Description
ChemDiv’s Chemokine Receptor-Targeted Library contains 20,000 compounds.Chemokine receptors – one of the key targets implicated in inflammation diseases, cancer pathology and viral infections. Chemokines are a family of small proteins inducing directed cell migration via specific chemokine receptors, which play important roles in a variety of biological and pathological processes. Therapeutic strategies based on modulation of chemokine receptor pathways were reported to be promising clinical strategies in the treatment of inflammatory diseases, such as multiple sclerosis and atherosclerosis, psoriasis, inflammatory skin diseases and atopic dermatitis, as well as viral infections, including HIV. Chemokine involvement is not limited to immunity and inflammation. Recent studies have clearly demonstrated that chemokines and chemokine receptors are produced by many different cell types, including tumor cells.
Ligand-receptor relationships within the chemokine superfamily are extremely complex. The receptors have been operationally subdivided according to the complexity of their relationships to ligands into various groups. Chemokine receptors, like all members of the GPCR superfamily, mediate signal transduction through specific G-proteins. Although chemokine receptors are morphologically similar to many other 7-TMS receptors, they have several unique structural signatures such as the amino acid sequence DRYLAIV in the second intracellular loop domain.
Publications
1. (a) Balakin, K. V., Ivanenkov, Y. A., Tkachenko, S. E., Kiselyov, A. S., and Ivachtchenko, A. V. (2008) Regulators of chemokine receptor activity as promising anticancer therapeutics Curr Cancer Drug Targets 8, 299-340; (b) Lavrovsky, Yan; Ivanenkov, Yan A.; Balakin, Konstantin V.; Medvedeva, Darya A.; Ivachtchenko, Alexandre V. (2008) CXCR4 Receptor as a Promising Target for Oncolytic Drugs Mini Reviews in Medicinal Chemistry 8, 1075-1087.2. (a) Sorensen, P. S. Biological Markers in Body Fluids for Activity and Progression in Multiple Sclerosis. Mult. Scler. 1999, 5, 287–290); (b) Israel, F.; Charo, M. D.; Richard, M.; Ransohoff, M. D. The Many Roles of Chemokines and Chemokine Receptors in Inflammation. The new England journal of medicine 2006, 354, 610-21.
3. Vestergaard, C.; Deleuran, M.; Gesser, B.; Gronhoj, L. C. Expression of The T-Helper 2-Specific Chemokine Receptor CCR4 on CCR10-Positive Lymphocytes in Atopic Dermatitis Skin but Not in Psoriasis Skin. Br. J. Dermatol. 2003, 149, 457–463.
4. Hoffman, T. L.; Doms, R. W. Chemokines and Coreceptors in HIV/SIV-host Interactions. AIDS 1998, 12 Suppl A, S17-26, 5. Horuk, R. Chemokines. Scientific World Journal 2007, 19, 224-32.
5. Choi, C.; Xu, X.; Oh, J. W.; Lee, S. J.; Gillespie, G. Y.; Park, H.; Jo, H.; Benveniste, E. N. Fasinduced
Expression of Chemokines in Human Glioma Cells: Involvement of Extracellular Signal-regulated Kinase 1/2 and p38 Mitogen-activated Protein Kinase. Cancer Res. 2001, 61, 3084–3091.
6. Mrowietz, U.; Schwenk, U.; Maune, S.; Bartels, J.; Küpper, M.; Fichtner, I.; Schröder, J. M.; Schadendorf, D. The Chemokine RANTES is Secreted by Human Melanoma Cells and is Associated with Enhanced Tumour Formation in Nude Mice. Br. J. Cancer 1999, 79, 1025-31.
7. Haghnegahdar, H.; Du, J.; Wang, D.; Strieter, R. M.; Burdick, M. D.; Nanney, L. B.; Cardwell, N.; Luan, J.; Shattuck-Brandt, R.; Richmond, A. The Tumorigenic and Angiogenic Effects of MGSA/GRO Proteins in Melanoma. J. Leukoc. Biol. 2000, 67, 53-62.
8. Bordoni, R.; Fine, R.; Murray, D.; Richmond, A. Characterization of The Role of Melanoma Growth Stimulatory Activity (MGSA) in The Growth of Normal Melanocytes, Nevocytes, and Malignant Melanocytes. J. Cell Biochem. 1990, 44, 207-19.
9. Owen, J. D.; Strieter, R.; Burdick, M.; Haghnegahdar, H.; Nanney, L.; Shattuck-Brandt, R.; Richmond, A. Enhanced Tumor -Forming Capacity for Immortalized Melanocytes Expressing Melanoma Growth Stimulatory Activity/Growth-Regulated Cytokine Beta and Gamma Proteins. Int. J. Cancer 1997, 73, 94- 103.
10. Richards, B. L.; Eisma, R. J.; Spiro, J. D.; Lindquist, R. L.; Kreutzer, D. L. Coexpression of Interleukin-8 Receptors in Head and Neck Squamous Cell Carcinoma. Am. J. Surg. 1997, 174, 507-12.
11. Takamori, H.; Oades, Z. G.; Hoch, O. C.; Burger, M.; Schraufstatter, I. U. Autocrine Growth Effect of IL-8 and Groalpha on a Human Pancreatic Cancer Cell Line, Capan-1. Pancreas 2000, 21, 526.
12. Olbina, G.; Cieslak, D.; Ruzdijic, S.; Esler, C.; An, Z.; Wang, X.; Hoffman, R.; Seifert, W.; Pietrzkowski, Z. Reversible Inhibition of IL-8 Receptor B Mrna Expression and Proliferation in Non- Small Cell Lung Cancer by Antisense Oligonucleotides. Anticancer Res. 1996, 16, 3525-30.
13. Koch, A. E.; Polverini, P. J.; Kunkel, S. L.; et al. Inteleukin-8 as a Macrophage-derived Mediator of Angiogenesis. Science 1992, 258, 1798-1801.
14. Murphy, P. M. Chemokines and The Molecular Basis of Cancer Metastasis. N. Engl. J. Med. 2001, 345, 833-835.
15. Romagnani, P. L.; Lasagni, L.; Annunziato, F.; Serio, M.; Romagnani, S. CXC Chemokines: The Regulatory Link Between Inflammation and Angiogenesis. Trends. Immunol. 2004, 25, 201-9.
16. Murphy, P. M. The Molecular Biology of Leukocyte Chemoattractant Receptors. Annu. Rev. Immunol. 1994, 12, 593-633.
17. Proudfoot, A. E. I.; Power, C. A.; Rommel, C.; Wells, T. N. Strategies for Chemokine Antagonists as Therapeutics. Semin. Immunol. 2003, 15, 57–65.
18. Mellado, M.; Rodr´ıguez-Frade, J. M.; Vila-Coro, A. J.; Fern ´ andez, S.; Martin de Ana, A.; Jones, D. R.; Tor ´ an, J. L.; Mart´ınez-A, C. Chemokine Receptor Homo- or Heterodimerization Activates Distinct Signaling Pathways. EMBO J. 2001, 20, 2497–2507.
19. Kohonen, T. (1990) The self-organizing map. Proceedings of the IEEE 78, 1464-80.
20 (a) Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J., and Gasteiger, J. (1996) Locating biologically active compounds in medium-sized heterogeneous datasets by topological autocorrelation vectors: dopamine and benzodiazepine agonists J Chem Inf Comp Sci 36, 1205-13.15; (b) Anzali, S., Barnickel, G., Krug, M., Sadowski, J., Wagener, M., Gasteiger, J., and Polanski, J. (1996) The comparison of geometric and electronic properties of molecular surfaces by neural networks: application to the analysis of corticosteroid binding globulin activity of steroids J Comp-Aid Mol Des 10, 521-34: (c) Brűstle, M., Beck, B., Schindler, T., King, W., Mitchell, T., and Clark, T. (2002) Descriptors, physical properties, and drug-likeness J Med Chem 45, 3345-55; (d) Rabow, A. A., Shoemaker, R. H., Sausville, E. A., and Covell, D. G. (2002) Mining the National Cancer Institute's tumor-screening database: identification of compounds with similar cellular activities J Med Chem 45, 818-40; (e) Korolev, D., Balakin, K. V., Nikolsky, Y., Kirillov, E., Ivanenkov, Y. A., Savchuk, N. P., Ivashchenko, A. A., and Nikolskaya, T. (2003) Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach J Med Chem 46, 3631-43; (f) Savchuk, N. P. (2003) In silico ADME-Tox as part of an optimization strategy Curr Drug Disc 4, 17-22.
21. Vaidehi, N.; Schlyer, S.; Trabanino, R. J.; Floriano, W. B.; Abrol, R.; Sharma, S.; Kochanny, M.; Koovakat, S.; Dunning, L.; Liang, M.; Fox, J. M.; de Mendonca, F. L.; Pease, J. E.; Goddard, W. A. 3rd.; Horuk, R. Predictions of CCR1 Chemokine Receptor Structure and BX 471 Antagonist Binding Followed by Experimental Validation. J. Biol. Chem. 2006, 281, 27613-20.
22. de Mendonca, F. L.; da Fonseca, P. C.; Phillips, R. M.; Saldanha, J. W.; Williams, T. J.; Pease, J. E. Site-Directed Mutagenesis of CC Chemokine Receptor 1 Reveals The Mechanism of Action of UCB 35625, a Small Molecule Chemokine Receptor Antagonist. J. Biol. Chem. 2005, 280, 4808-16.
23. Berkhout, T. A.; Blaney, F. E.; Bridges, A. M.; Cooper, D. G.; Forbes, I. T.; Gribble, A. D.; Groot, P. H.; Hardy, A.; Ife, R. J.; Kaur, R.; Moores, K. E.; Shillito, H.; Willetts, J.; Witherington, J. CCR2: Characterization of The Antagonist Binding Site from a Combined Receptor Modeling/Mutagenesis Approach. J. Med. Chem. 2003, 46, 4070-86.
24. (a) Fano, A.; Ritchie, D. W.; Carrieri, A. Modeling The Structural Basis of Human CCR5 Chemokine Receptor Function: from Homology Model Building and Molecular Dynamics Validation to Agonist and Antagonist Docking. J. Chem. Inf. Model. 2006, 46, 1223-35; (b) Paterlini, M. G. Structure Modeling of The Chemokine Receptor CCR5: Implications for Ligand Binding and Selectivity. Biophys J. 2002, 83, 3012-31; (c) Kellenberger, E.; Springael, J. Y.; Parmentier, M.; Hachet-Haas, M.; Galzi, J. L.; Rognan, D. Identification of Nonpeptide CCR5 Receptor Agonists by Structure-based Virtual Screening. J. Med. Chem. 2007, 50, 1294-303.
25. Klabunde, T. (2006) Chemogenomic approaches to ligand design. In Ligand design for G-proteincoupled receptors, Rognan, D., (Ed). Wiley-VCH, Weinheim.
26 (a) Zlotnik, A., and Yoshie, O. (2000) Chemokines: a new classification system and their role in immunity Immunity 12, 121-7; (b) Yoshie, O., Imai, T., and Nomiyama, H. (2001) Chemokines in immunity Adv Immunol 78, 57-110.
27. (a) Pérez-Nueno, V. I., Ritchie, D. W., Rabal, O., Pascual, R., Borrell, J. I., and Teixidó, J. (2008) Comparison of ligand-based and receptor-based virtual screening of HIV entry inhibitors for the CXCR4 and CCR5 receptors using 3D ligand shape matching and ligand-receptor docking J Chem Inf Model 48, 509-33; (b) Spencer, E. H. (2005) Development of a Structure Prediction Method for G-Protein Coupled Receptors, Thesis, California Institute of Technology.
28. Efremov, R., Truong, M. J., Darcissac, E. C., Zeng, J., Grau, O., Vergoten, G., Debard, C., Capron, A., and Bahr, G. M. (2001) Human chemokine receptors CCR5, CCR3 and CCR2B share common polarity motif in the first extracellular loop with other human G-protein coupled receptors European Journal ofBiochemistry 263, 746-56.